diff --git a/hott/types/fin.hlean b/hott/types/fin.hlean index 1c78cddea..2e22a6432 100644 --- a/hott/types/fin.hlean +++ b/hott/types/fin.hlean @@ -538,4 +538,17 @@ calc fin n + unit ≃ fin n + fin 1 : H ... ≃ fin (n+1) : fin_sum_equiv +definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n := +begin + revert n H, induction m with m IH IH, + { intro n H, cases n, reflexivity, exfalso, + apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero }, + { intro n H, cases n with n, exfalso, + apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero, + have fin n + unit ≃ fin m + unit, from + calc fin n + unit ≃ fin (nat.succ n) : fin_succ_equiv + ... ≃ fin (nat.succ m) : H + ... ≃ fin m + unit : fin_succ_equiv, exact sorry }, +end + end fin diff --git a/hott/types/sum.hlean b/hott/types/sum.hlean index 7a219615e..e28f8029d 100644 --- a/hott/types/sum.hlean +++ b/hott/types/sum.hlean @@ -6,7 +6,7 @@ Author: Floris van Doorn Theorems about sums/coproducts/disjoint unions -/ -import .pi +import .pi logic open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool @@ -195,6 +195,55 @@ namespace sum ... ≃ (A × B) + (C × A) : prod_comm_equiv ... ≃ (A × B) + (A × C) : prod_comm_equiv + -- TODO generalizing, this is acutally true for all finite sets + open unit decidable sigma.ops + + + definition foo_sum {A B : Type} (x : A + B) : (Σ a, x = inl a) + (Σ b, x = inr b) := + by cases x with a b; exact inl ⟨a, idp⟩; exact inr ⟨b, idp⟩ + + definition sum_unit_cancel_left_map {A B : Type} (H : unit + A ≃ unit + B) : A → B := + begin + intro a, cases foo_sum (H (inr a)) with u b, rotate 1, exact b.1, + cases u with u Hu, cases foo_sum (H (inl ⋆)) with u' b, rotate 1, exact b.1, + cases u' with u' Hu', exfalso, apply empty_of_inl_eq_inr, + calc inl ⋆ = H⁻¹ (H (inl ⋆)) : to_left_inv H + ... = H⁻¹ (inl u') : Hu' + ... = H⁻¹ (inl u) : is_hprop.elim + ... = H⁻¹ (H (inr a)) : Hu + ... = inr a : to_left_inv H + end + + definition sum_unit_cancel_left_inv {A B : Type} (H : unit + A ≃ unit + B) (b : B) : + sum_unit_cancel_left_map H (sum_unit_cancel_left_map H⁻¹ b) = b := + begin + assert HH : to_fun H⁻¹ = (to_fun H)⁻¹, cases H, reflexivity, + esimp[sum_unit_cancel_left_map], apply sum.rec, intro x, cases x with u Hu, esimp, + apply sum.rec, intro x, cases x with u' Hu', esimp, exfalso, apply empty_of_inl_eq_inr, + calc inl ⋆ = H⁻¹ (H (inl ⋆)) : to_left_inv H + ... = H⁻¹ (inl u') : Hu' + ... = H⁻¹ (inl u) : is_hprop.elim + ... = H⁻¹ (H (inr _)) : Hu + ... = inr _ : to_left_inv H, + intro x, cases x with b' Hb', esimp, cases foo_sum (H⁻¹ (inr b)) with x x, + cases x with u' Hu', cases u', apply eq_of_inr_eq_inr, rewrite -HH at Hu', + calc inr b' = H (inl ⋆) : Hb' + ... = H (H⁻¹ (inr b)) : ap (to_fun H) Hu' + ... = inr b : to_right_inv H, + cases x with a Ha, exfalso, + assert GG : inr b = H (inr a), apply concat, apply inverse, apply to_right_inv H, + apply ap H, exact Ha, + rewrite -HH at Ha, rewrite Ha at Hu, + end + check @empty.rec, + + definition sum_unit_cancel_left {A B : Type} (H : unit + A ≃ unit + B) : A ≃ B := + begin + fapply equiv.MK, apply sum_unit_cancel_left_map H, + apply sum_unit_cancel_left_map H⁻¹, + intro b, esimp, + end + /- universal property -/ definition sum_rec_unc [unfold 5] {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b)))