From 0b9c8e14a4ff66f9a9815065be9c0e98443e4336 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Thu, 4 Jun 2015 21:39:50 -0400 Subject: [PATCH] fix(*/init/nat): fix occurrences where both theorem and [unfold-c] were used --- hott/init/nat.hlean | 8 ++++---- library/init/nat.lean | 8 ++++---- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/hott/init/nat.hlean b/hott/init/nat.hlean index d5b719010..bfa3a244c 100644 --- a/hott/init/nat.hlean +++ b/hott/init/nat.hlean @@ -73,16 +73,16 @@ namespace nat theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H - theorem succ_le_succ [unfold-c 3] {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := + definition succ_le_succ [unfold-c 3] {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := by induction H;reflexivity;exact le.step v_0 - theorem pred_le_pred [unfold-c 3] {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := + definition pred_le_pred [unfold-c 3] {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := by induction H;reflexivity;cases b;exact v_0;exact le.step v_0 - theorem le_of_succ_le_succ [unfold-c 3] {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := + definition le_of_succ_le_succ [unfold-c 3] {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := pred_le_pred H - theorem le_succ_of_pred_le [unfold-c 1] {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m := + definition le_succ_of_pred_le [unfold-c 1] {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m := by cases n;exact le.step H;exact succ_le_succ H theorem not_succ_le_self {n : ℕ} : ¬succ n ≤ n := diff --git a/library/init/nat.lean b/library/init/nat.lean index 83cec94fa..2bc07fa85 100644 --- a/library/init/nat.lean +++ b/library/init/nat.lean @@ -73,16 +73,16 @@ namespace nat theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H - theorem succ_le_succ [unfold-c 3] {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := + theorem succ_le_succ {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := by induction H;reflexivity;exact le.step v_0 - theorem pred_le_pred [unfold-c 3] {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := + theorem pred_le_pred {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := by induction H;reflexivity;cases b;exact v_0;exact le.step v_0 - theorem le_of_succ_le_succ [unfold-c 3] {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := + theorem le_of_succ_le_succ {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := pred_le_pred H - theorem le_succ_of_pred_le [unfold-c 1] {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m := + theorem le_succ_of_pred_le {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m := by cases n;exact le.step H;exact succ_le_succ H theorem not_succ_le_self {n : ℕ} : ¬succ n ≤ n :=