style(builtin/Nat): name convention

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-07 00:05:51 -08:00
parent c5d13abd6f
commit 0bdecb6aa4
2 changed files with 6 additions and 6 deletions

View file

@ -117,14 +117,14 @@ theorem mul::succl (a b : Nat) : (a + 1) * b = a * b + b
... = a * (n + 1) + n + 1 : { symm (mul::succr a n) }
... = a * (n + 1) + (n + 1) : symm (add::assoc (a * (n + 1)) n 1))
theorem mul::lhs::one (a : Nat) : 1 * a = a
theorem mul::onel (a : Nat) : 1 * a = a
:= induction a
(have 1 * 0 = 0 : trivial)
(λ (n : Nat) (iH : 1 * n = n),
calc 1 * (n + 1) = 1 * n + 1 : mul::succr 1 n
... = n + 1 : { iH })
theorem mul::rhs::one (a : Nat) : a * 1 = a
theorem mul::oner (a : Nat) : a * 1 = a
:= induction a
(have 0 * 1 = 0 : trivial)
(λ (n : Nat) (iH : n * 1 = n),
@ -140,7 +140,7 @@ theorem mul::comm (a b : Nat) : a * b = b * a
... = n * a + a : { iH }
... = (n + 1) * a : symm (mul::succl n a))
theorem distribute (a b c : Nat) : a * (b + c) = a * b + a * c
theorem distributer (a b c : Nat) : a * (b + c) = a * b + a * c
:= induction a
(calc 0 * (b + c) = 0 : mul::zerol (b + c)
... = 0 + 0 : trivial
@ -157,9 +157,9 @@ theorem distribute (a b c : Nat) : a * (b + c) = a * b + a * c
... = (n + 1) * b + (n * c + c) : symm (add::assoc ((n + 1) * b) (n * c) c)
... = (n + 1) * b + (n + 1) * c : { symm (mul::succl n c) })
theorem distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
theorem distributel (a b c : Nat) : (a + b) * c = a * c + b * c
:= calc (a + b) * c = c * (a + b) : mul::comm (a + b) c
... = c * a + c * b : distribute c a b
... = c * a + c * b : distributer c a b
... = a * c + c * b : { mul::comm c a }
... = a * c + b * c : { mul::comm c b }
@ -171,7 +171,7 @@ theorem mul::assoc (a b c : Nat) : a * (b * c) = a * b * c
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul::succl n (b * c)
... = n * b * c + (b * c) : { iH }
... = (n * b + b) * c : symm (distribute2 (n * b) b c)
... = (n * b + b) * c : symm (distributel (n * b) b c)
... = (n + 1) * b * c : { symm (mul::succl n b) })
theorem add::inj' (a b c : Nat) : a + b = a + c ⇒ b = c

Binary file not shown.