style(builtin/Nat): name convention
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
c5d13abd6f
commit
0bdecb6aa4
2 changed files with 6 additions and 6 deletions
|
@ -117,14 +117,14 @@ theorem mul::succl (a b : Nat) : (a + 1) * b = a * b + b
|
|||
... = a * (n + 1) + n + 1 : { symm (mul::succr a n) }
|
||||
... = a * (n + 1) + (n + 1) : symm (add::assoc (a * (n + 1)) n 1))
|
||||
|
||||
theorem mul::lhs::one (a : Nat) : 1 * a = a
|
||||
theorem mul::onel (a : Nat) : 1 * a = a
|
||||
:= induction a
|
||||
(have 1 * 0 = 0 : trivial)
|
||||
(λ (n : Nat) (iH : 1 * n = n),
|
||||
calc 1 * (n + 1) = 1 * n + 1 : mul::succr 1 n
|
||||
... = n + 1 : { iH })
|
||||
|
||||
theorem mul::rhs::one (a : Nat) : a * 1 = a
|
||||
theorem mul::oner (a : Nat) : a * 1 = a
|
||||
:= induction a
|
||||
(have 0 * 1 = 0 : trivial)
|
||||
(λ (n : Nat) (iH : n * 1 = n),
|
||||
|
@ -140,7 +140,7 @@ theorem mul::comm (a b : Nat) : a * b = b * a
|
|||
... = n * a + a : { iH }
|
||||
... = (n + 1) * a : symm (mul::succl n a))
|
||||
|
||||
theorem distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
||||
theorem distributer (a b c : Nat) : a * (b + c) = a * b + a * c
|
||||
:= induction a
|
||||
(calc 0 * (b + c) = 0 : mul::zerol (b + c)
|
||||
... = 0 + 0 : trivial
|
||||
|
@ -157,9 +157,9 @@ theorem distribute (a b c : Nat) : a * (b + c) = a * b + a * c
|
|||
... = (n + 1) * b + (n * c + c) : symm (add::assoc ((n + 1) * b) (n * c) c)
|
||||
... = (n + 1) * b + (n + 1) * c : { symm (mul::succl n c) })
|
||||
|
||||
theorem distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c
|
||||
theorem distributel (a b c : Nat) : (a + b) * c = a * c + b * c
|
||||
:= calc (a + b) * c = c * (a + b) : mul::comm (a + b) c
|
||||
... = c * a + c * b : distribute c a b
|
||||
... = c * a + c * b : distributer c a b
|
||||
... = a * c + c * b : { mul::comm c a }
|
||||
... = a * c + b * c : { mul::comm c b }
|
||||
|
||||
|
@ -171,7 +171,7 @@ theorem mul::assoc (a b c : Nat) : a * (b * c) = a * b * c
|
|||
(λ (n : Nat) (iH : n * (b * c) = n * b * c),
|
||||
calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul::succl n (b * c)
|
||||
... = n * b * c + (b * c) : { iH }
|
||||
... = (n * b + b) * c : symm (distribute2 (n * b) b c)
|
||||
... = (n * b + b) * c : symm (distributel (n * b) b c)
|
||||
... = (n + 1) * b * c : { symm (mul::succl n b) })
|
||||
|
||||
theorem add::inj' (a b c : Nat) : a + b = a + c ⇒ b = c
|
||||
|
|
Binary file not shown.
Loading…
Reference in a new issue