diff --git a/library/data/set/filter.lean b/library/data/set/filter.lean index 64fd71489..ebc12d461 100644 --- a/library/data/set/filter.lean +++ b/library/data/set/filter.lean @@ -401,6 +401,7 @@ le.antisymm !bot_le begin apply le_of_forall_eventually, intro P H, + unfold eventually, apply mem_univ end diff --git a/library/data/set/map.lean b/library/data/set/map.lean index 69bead8a2..f9e99a024 100644 --- a/library/data/set/map.lean +++ b/library/data/set/map.lean @@ -121,8 +121,10 @@ inj_on_of_left_inv_on H theorem left_inverse_comp {f' : map b a} {g' : map c b} {g : map b c} {f : map a b} (Hf : map.left_inverse f' f) (Hg : map.left_inverse g' g) : map.left_inverse (f' ∘ g') (g ∘ f) := -left_inv_on_comp (mapsto f) Hf Hg - +begin + unfold map.left_inverse, + exact left_inv_on_comp (mapsto f) Hf Hg +end /- right inverse -/ -- g is a right inverse to f