feat(kernel/type_checker): finish is_convertible predicate

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-04-23 20:16:14 -07:00
parent e78de448aa
commit 0d7902f9eb
4 changed files with 157 additions and 63 deletions

View file

@ -29,7 +29,26 @@ class certified_definition;
*/
class normalizer_extension {
public:
virtual optional<std::pair<expr, constraints>> operator()(expr const & t, environment const & env, type_checker & tc) const;
/**
\brief Normalization extension context (aka API provided to the normalizer_extension procedure).
The extension can request
1) the environment being used.
2) the weak head normal form of an expression.
3) the type of an expression.
4) a new fresh name
A normalizer extension can also add a new constraint.
*/
class context {
public:
virtual ~context() {}
virtual environment const & env() const = 0;
virtual expr whnf(expr const & e) = 0;
virtual expr infer_type(expr const & e) = 0;
virtual name mk_fresh_name() = 0;
virtual void add_cnstr(constraint const & c) = 0;
};
virtual optional<expr> operator()(expr const & e, context const & ctx) const;
};
/**

View file

@ -77,6 +77,14 @@ void expr_cell::set_is_arrow(bool flag) {
lean_assert(is_arrow() && *is_arrow() == flag);
}
bool is_meta(expr const & e) {
expr const * it = &e;
while (is_app(*it)) {
it = &(app_fn(*it));
}
return is_metavar(*it);
}
// Expr variables
expr_var::expr_var(unsigned idx):
expr_cell(expr_kind::Var, idx, false, false, false),

View file

@ -319,6 +319,8 @@ inline bool is_mlocal(expr const & e) { return is_metavar(e) || is_local(e);
bool is_atomic(expr const & e);
bool is_arrow(expr const & t);
/** \brief Return true iff \c e is a metavariable or an application of a metavariable */
bool is_meta(expr const & e);
// =======================================
// =======================================

View file

@ -11,6 +11,7 @@ Author: Leonardo de Moura
#include "kernel/expr_maps.h"
#include "kernel/instantiate.h"
#include "kernel/max_sharing.h"
#include "kernel/free_vars.h"
namespace lean {
/** \brief Auxiliary functional object used to implement type checker. */
@ -24,14 +25,23 @@ struct type_checker::imp {
max_sharing_fn m_sharing;
expr_map<expr> m_cache;
expr_map<expr> m_whnf_core_cache;
// temporary flags
bool m_cnstrs_enabled; // true if constraints can be generated
expr_map<expr> m_whnf_cache;
imp(environment const & env, name_generator const & g, constraint_handler & h,
optional<module_idx> mod_idx, bool memoize, name_set const & extra_opaque):
m_env(env), m_gen(g), m_chandler(h), m_module_idx(mod_idx), m_memoize(memoize), m_extra_opaque(extra_opaque) {}
class normalizer_context : public normalizer_extension::context {
imp & m_imp;
public:
normalizer_context(imp & i):m_imp(i) {}
virtual environment const & env() const { return m_imp.m_env; }
virtual expr whnf(expr const & e) { return m_imp.whnf(e); }
virtual expr infer_type(expr const & e) { return m_imp.infer_type(e); }
virtual name mk_fresh_name() { return m_imp.m_gen.next(); }
virtual void add_cnstr(constraint const & c) { m_imp.add_cnstr(c); }
};
expr max_sharing(expr const & e) { return m_memoize ? m_sharing(e) : e; }
expr instantiate(expr const & e, unsigned n, expr const * s) { return max_sharing(lean::instantiate(e, n, s)); }
expr instantiate(expr const & e, expr const & s) { return max_sharing(lean::instantiate(e, s)); }
@ -46,6 +56,14 @@ struct type_checker::imp {
expr instantiate_params(expr const & e, param_names const & ps, levels const & ls) {
return max_sharing(lean::instantiate_params(e, ps, ls));
}
/** \brief Apply normalizer extensions to \c e. */
optional<expr> norm_ext(expr const & e) {
normalizer_context ctx(*this);
if (auto new_e = m_env.norm_ext()(e, ctx))
return some_expr(max_sharing(*new_e));
else
return none_expr();
}
bool check_memoized(expr const & e) const {
return !m_memoize || m_sharing.already_processed(e);
@ -233,32 +251,52 @@ struct type_checker::imp {
}
}
/** \brief Put expression \c e in weak head normal form */
expr whnf(expr const & e) {
// check cache
if (m_memoize) {
auto it = m_whnf_cache.find(e);
if (it != m_whnf_cache.end())
return it->second;
}
expr t = e;
while (true) {
expr t1 = unfold_names(whnf_core(t), 0);
auto new_t = norm_ext(t1);
if (new_t) {
t = *new_t;
} else {
if (m_memoize)
m_whnf_cache.insert(mk_pair(e, t1));
return t1;
}
}
}
/** \brief Add given constraint to the constraint handler m_chandler. */
void add_cnstr(constraint const & c) {
m_chandler.add_cnstr(c);
}
/** \brief Return the current/latest justification object created by the type checker. */
justification get_curr_justification() {
// TODO(Leo)
return mk_assumption_justification(0);
}
/** \brief Cheap test for whnf (weak head normal form) just based on the kind of \c e */
static bool quick_is_whnf(expr const & e) {
switch (e.kind()) {
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local:
case expr_kind::Lambda: case expr_kind::Pi:
return true;
case expr_kind::Constant: case expr_kind::Macro: case expr_kind::Let: case expr_kind::App:
return false;
}
lean_unreachable(); // LCOV_EXCL_LINE
}
/** \brief Eta-expand \c s and check if it is definitionally equal to \c t. */
bool try_eta(expr const & t, expr const & s) {
lean_assert(is_lambda(t));
lean_assert(!is_lambda(s));
// TODO(Leo):
return false;
expr t_s = whnf(infer_type(s));
if (is_pi(t_s)) {
// new_s := lambda x : domain(t_s), s x
expr new_s = mk_lambda(m_gen.next(), binder_domain(t_s), mk_app(lift_free_vars(s, 1), mk_var(0)));
return is_def_eq(t, new_s);
} else {
return false;
}
}
/**
@ -269,10 +307,8 @@ struct type_checker::imp {
lbool quick_is_conv(expr const & t, expr const & s, bool def_eq) {
if (t == s)
return l_true; // t and s are structurally equal
if (is_metavar(t) || is_metavar(s)) {
// if t or s is a metavariable, then add constraint
if (!m_cnstrs_enabled)
return l_false; // constraint creation is disabled, so return error
if (is_meta(t) || is_meta(s)) {
// if t or s is a metavariable (or the application of a metavariable), then add constraint
if (def_eq)
add_cnstr(mk_eq_cnstr(t, s, get_curr_justification()));
else
@ -299,8 +335,6 @@ struct type_checker::imp {
// t and s are Sorts
if (is_trivial(sort_level(t), sort_level(s)) && (!def_eq || is_trivial(sort_level(s), sort_level(t))))
return l_true;
if (!m_cnstrs_enabled)
return l_false;
add_cnstr(mk_level_cnstr(sort_level(t), sort_level(s), get_curr_justification()));
if (def_eq)
add_cnstr(mk_level_cnstr(sort_level(s), sort_level(t), get_curr_justification()));
@ -316,6 +350,10 @@ struct type_checker::imp {
return l_undef; // This is not an "easy case"
}
/**
\brief If def_eq is false, then return true iff t is convertible to s.
If def_eq is true, then return true iff t is definitionally equal to s.
*/
bool is_conv(expr const & t, expr const & s, bool def_eq) {
check_system("is_convertible");
lbool r = quick_is_conv(t, s, def_eq);
@ -329,68 +367,95 @@ struct type_checker::imp {
if (r != l_undef) return r == l_true;
}
// lazy delta-reduction + whnf (still not using normalizer extensions)
// lazy delta-reduction and then normalizer extensions
while (true) {
auto d_t = is_delta(t_n);
auto d_s = is_delta(s_n);
if (!d_t && !d_s) {
break;
} else if (d_t && !d_s) {
t_n = whnf_core(unfold_names(t_n, 0));
} else if (!d_t && d_s) {
s_n = whnf_core(unfold_names(s_n, 0));
} else if (d_t->get_weight() > d_s->get_weight()) {
t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1));
} else if (d_t->get_weight() < d_s->get_weight()) {
s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1));
} else {
lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight());
if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) {
// try backtracking trick to avoild delta-reduction
// TODO(Leo)
// first, keep applying lazy delta-reduction while applicable
while (true) {
auto d_t = is_delta(t_n);
auto d_s = is_delta(s_n);
if (!d_t && !d_s) {
break;
} else if (d_t && !d_s) {
t_n = whnf_core(unfold_names(t_n, 0));
} else if (!d_t && d_s) {
s_n = whnf_core(unfold_names(s_n, 0));
} else if (d_t->get_weight() > d_s->get_weight()) {
t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1));
} else if (d_t->get_weight() < d_s->get_weight()) {
s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1));
} else {
lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight());
if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) {
// try backtracking trick to avoild delta-reduction
// TODO(Leo)
}
t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1));
s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1));
}
t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1));
s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1));
r = quick_is_conv(t_n, s_n, def_eq);
if (r != l_undef) return r == l_true;
}
// try normalizer extensions
auto new_t_n = norm_ext(t_n);
auto new_s_n = norm_ext(s_n);
if (!new_t_n && !new_s_n)
break; // t_n and s_n are in weak head normal form
if (new_t_n)
t_n = whnf_core(*new_t_n);
if (new_s_n)
s_n = whnf_core(*new_s_n);
r = quick_is_conv(t_n, s_n, def_eq);
if (r != l_undef) return r == l_true;
}
if (m_env.proof_irrel()) {
// Proof irrelevance support
flet<bool> disable_cnstrs(m_cnstrs_enabled, false); // disable constraint generation
auto t_type = infer_type(t);
if (t_type && is_proposition(*t_type)) {
auto s_type = infer_type(s);
if (s_type)
return is_def_eq(*t_type, *s_type);
}
}
// At this point, t_n and s_n are in weak head normal form (modulo meta-variables)
if (m_env.eta()) {
lean_assert(!is_lambda(t) || !is_lambda(s));
lean_assert(!is_lambda(t_n) || !is_lambda(s_n));
// Eta-reduction support
if ((is_lambda(t) && try_eta(t, s)) ||
(is_lambda(s) && try_eta(s, t)))
if ((is_lambda(t_n) && try_eta(t_n, s_n)) ||
(is_lambda(s_n) && try_eta(s_n, t_n)))
return true;
}
if (is_app(t_n) && is_app(s_n)) {
expr it1 = t_n;
expr it2 = s_n;
bool ok = true;
do {
if (!is_def_eq(app_arg(it1), app_arg(it2))) {
ok = false;
break;
}
it1 = app_fn(it1);
it2 = app_fn(it2);
} while (is_app(it1) && is_app(it2));
if (ok && is_def_eq(it1, it2))
return true;
}
if (m_env.proof_irrel()) {
// Proof irrelevance support
expr t_type = infer_type(t);
return is_proposition(t_type) && is_def_eq(t_type, infer_type(s));
}
return false;
}
/** \brief Return true iff t and s are definitionally equal */
/** \brief Return true iff \c t and \c s are definitionally equal */
bool is_def_eq(expr const & t, expr const & s) {
return is_conv(t, s, true);
}
bool is_proposition(expr const &) {
// TODO(Leo)
return false;
/** \brief Return true iff \c e is a proposition */
bool is_proposition(expr const & e) {
return whnf(infer_type(e)) == Bool;
}
optional<expr> infer_type(expr const &) {
expr infer_type(expr const &) {
// TODO(Leo)
return none_expr();
return expr();
}
};
}