feat(library/data/countable): choice function for countable types

This commit is contained in:
Leonardo de Moura 2015-04-16 12:29:06 -07:00
parent 7a4f43d6ab
commit 0dd7667836

View file

@ -7,7 +7,7 @@ Author: Leonardo de Moura
Type class for countable types Type class for countable types
-/ -/
import data.fintype data.list data.sum data.nat import data.fintype data.list data.sum data.nat data.subtype
open option list nat open option list nat
structure countable [class] (A : Type) := structure countable [class] (A : Type) :=
@ -214,3 +214,90 @@ countable.mk
esimp [option.cases_on], esimp [option.cases_on],
rewrite [linv] rewrite [linv]
end) end)
/-
Choice function for countable types and decidable predicates.
We provide the following API
choose {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] : (∃ x, p x) → A :=
choose_spec {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
-/
section find_a
parameters {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p]
include c
include d
private definition pn (n : nat) : Prop :=
match unpickle A n with
| some a := p a
| none := false
end
private definition decidable_pn : decidable_pred pn :=
λ n,
match unpickle A n with
| some a := λ e : unpickle A n = some a,
match d a with
| decidable.inl t :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inl t)
end
| decidable.inr f :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inr f)
end
end
| none := λ e : unpickle A n = none,
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact decidable_false
end
end (eq.refl (unpickle A n))
private definition ex_pn_of_ex : (∃ x, p x) → (∃ x, pn x) :=
assume ex,
obtain (w : A) (pw : p w), from ex,
exists.intro (pickle w)
begin
unfold pn, rewrite [picklek], esimp, exact pw
end
private lemma unpickle_ne_none_of_pn {n : nat} : pn n → unpickle A n ≠ none :=
assume pnn e,
begin
rewrite [▸ (match unpickle A n with | some a := p a | none := false end) at pnn],
rewrite [e at pnn], esimp [option.cases_on] at pnn,
exact (false.elim pnn)
end
open subtype
private lemma of_nat (n : nat) : pn n → { a : A | p a } :=
match unpickle A n with
| some a := λ (e : unpickle A n = some a),
begin
unfold pn, rewrite e, esimp [option.cases_on], intro pa,
exact (tag a pa)
end
| none := λ (e : unpickle A n = none) h, absurd e (unpickle_ne_none_of_pn h)
end (eq.refl (unpickle A n))
private definition find_a : (∃ x, p x) → {a : A | p a} :=
assume ex : ∃ x, p x,
have exn : ∃ x, pn x, from ex_pn_of_ex ex,
let r : nat := @nat.choose pn decidable_pn exn in
have pnr : pn r, from @nat.choose_spec pn decidable_pn exn,
of_nat r pnr
end find_a
namespace countable
open subtype
definition choose {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] : (∃ x, p x) → A :=
assume ex, elt_of (find_a ex)
theorem choose_spec {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
has_property (find_a ex)
end countable