refactor(library/data): cleanup proofs using new features
This commit is contained in:
parent
3e3d37905c
commit
0de715ae54
12 changed files with 284 additions and 282 deletions
|
@ -49,14 +49,14 @@ section semiring
|
||||||
include s
|
include s
|
||||||
|
|
||||||
theorem ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
|
theorem ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
|
||||||
assume H1 : a = 0,
|
suppose a = 0,
|
||||||
have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul b,
|
have a * b = 0, from this⁻¹ ▸ zero_mul b,
|
||||||
H H2
|
H this
|
||||||
|
|
||||||
theorem ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
|
theorem ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
|
||||||
assume H1 : b = 0,
|
suppose b = 0,
|
||||||
have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero a,
|
have a * b = 0, from this⁻¹ ▸ mul_zero a,
|
||||||
H H2
|
H this
|
||||||
|
|
||||||
theorem distrib_three_right (a b c d : A) : (a + b + c) * d = a * d + b * d + c * d :=
|
theorem distrib_three_right (a b c d : A) : (a + b + c) * d = a * d + b * d + c * d :=
|
||||||
by rewrite *right_distrib
|
by rewrite *right_distrib
|
||||||
|
@ -116,21 +116,21 @@ section comm_semiring
|
||||||
theorem dvd_mul_of_dvd_left {a b : A} (H : a ∣ b) (c : A) : a ∣ b * c :=
|
theorem dvd_mul_of_dvd_left {a b : A} (H : a ∣ b) (c : A) : a ∣ b * c :=
|
||||||
dvd.elim H
|
dvd.elim H
|
||||||
(take d,
|
(take d,
|
||||||
assume H₁ : b = a * d,
|
suppose b = a * d,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show a * (d * c) = b * c, from by rewrite [-mul.assoc, H₁]))
|
(show a * (d * c) = b * c, from by rewrite [-mul.assoc]; substvars))
|
||||||
|
|
||||||
theorem dvd_mul_of_dvd_right {a b : A} (H : a ∣ b) (c : A) : a ∣ c * b :=
|
theorem dvd_mul_of_dvd_right {a b : A} (H : a ∣ b) (c : A) : a ∣ c * b :=
|
||||||
!mul.comm ▸ (dvd_mul_of_dvd_left H _)
|
!mul.comm ▸ (dvd_mul_of_dvd_left H _)
|
||||||
|
|
||||||
theorem mul_dvd_mul {a b c d : A} (dvd_ab : a ∣ b) (dvd_cd : c ∣ d) : a * c ∣ b * d :=
|
theorem mul_dvd_mul {a b c d : A} (dvd_ab : a ∣ b) (dvd_cd : c ∣ d) : a * c ∣ b * d :=
|
||||||
dvd.elim dvd_ab
|
dvd.elim dvd_ab
|
||||||
(take e, assume Haeb : b = a * e,
|
(take e, suppose b = a * e,
|
||||||
dvd.elim dvd_cd
|
dvd.elim dvd_cd
|
||||||
(take f, assume Hcfd : d = c * f,
|
(take f, suppose d = c * f,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show a * c * (e * f) = b * d,
|
(show a * c * (e * f) = b * d,
|
||||||
by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc, Haeb, Hcfd])))
|
by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc]; substvars)))
|
||||||
|
|
||||||
theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b ∣ c) : a ∣ c :=
|
theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b ∣ c) : a ∣ c :=
|
||||||
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
||||||
|
@ -140,11 +140,11 @@ section comm_semiring
|
||||||
|
|
||||||
theorem dvd_add {a b c : A} (Hab : a ∣ b) (Hac : a ∣ c) : a ∣ b + c :=
|
theorem dvd_add {a b c : A} (Hab : a ∣ b) (Hac : a ∣ c) : a ∣ b + c :=
|
||||||
dvd.elim Hab
|
dvd.elim Hab
|
||||||
(take d, assume Hadb : b = a * d,
|
(take d, suppose b = a * d,
|
||||||
dvd.elim Hac
|
dvd.elim Hac
|
||||||
(take e, assume Haec : c = a * e,
|
(take e, suppose c = a * e,
|
||||||
dvd.intro (show a * (d + e) = b + c,
|
dvd.intro (show a * (d + e) = b + c,
|
||||||
by rewrite [left_distrib, -Hadb, -Haec])))
|
by rewrite [left_distrib]; substvars)))
|
||||||
end comm_semiring
|
end comm_semiring
|
||||||
|
|
||||||
/- ring -/
|
/- ring -/
|
||||||
|
@ -152,18 +152,18 @@ end comm_semiring
|
||||||
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A
|
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A
|
||||||
|
|
||||||
theorem ring.mul_zero [s : ring A] (a : A) : a * 0 = 0 :=
|
theorem ring.mul_zero [s : ring A] (a : A) : a * 0 = 0 :=
|
||||||
have H : a * 0 + 0 = a * 0 + a * 0, from calc
|
have a * 0 + 0 = a * 0 + a * 0, from calc
|
||||||
a * 0 + 0 = a * 0 : by rewrite add_zero
|
a * 0 + 0 = a * 0 : by rewrite add_zero
|
||||||
... = a * (0 + 0) : by rewrite add_zero
|
... = a * (0 + 0) : by rewrite add_zero
|
||||||
... = a * 0 + a * 0 : by rewrite {a*_}ring.left_distrib,
|
... = a * 0 + a * 0 : by rewrite {a*_}ring.left_distrib,
|
||||||
show a * 0 = 0, from (add.left_cancel H)⁻¹
|
show a * 0 = 0, from (add.left_cancel this)⁻¹
|
||||||
|
|
||||||
theorem ring.zero_mul [s : ring A] (a : A) : 0 * a = 0 :=
|
theorem ring.zero_mul [s : ring A] (a : A) : 0 * a = 0 :=
|
||||||
have H : 0 * a + 0 = 0 * a + 0 * a, from calc
|
have 0 * a + 0 = 0 * a + 0 * a, from calc
|
||||||
0 * a + 0 = 0 * a : by rewrite add_zero
|
0 * a + 0 = 0 * a : by rewrite add_zero
|
||||||
... = (0 + 0) * a : by rewrite add_zero
|
... = (0 + 0) * a : by rewrite add_zero
|
||||||
... = 0 * a + 0 * a : by rewrite {_*a}ring.right_distrib,
|
... = 0 * a + 0 * a : by rewrite {_*a}ring.right_distrib,
|
||||||
show 0 * a = 0, from (add.left_cancel H)⁻¹
|
show 0 * a = 0, from (add.left_cancel this)⁻¹
|
||||||
|
|
||||||
definition ring.to_semiring [trans-instance] [coercion] [reducible] [s : ring A] : semiring A :=
|
definition ring.to_semiring [trans-instance] [coercion] [reducible] [s : ring A] : semiring A :=
|
||||||
⦃ semiring, s,
|
⦃ semiring, s,
|
||||||
|
@ -223,23 +223,23 @@ section
|
||||||
... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib
|
... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib
|
||||||
|
|
||||||
theorem mul_neg_one_eq_neg : a * (-1) = -a :=
|
theorem mul_neg_one_eq_neg : a * (-1) = -a :=
|
||||||
have H : a + a * -1 = 0, from calc
|
have a + a * -1 = 0, from calc
|
||||||
a + a * -1 = a * 1 + a * -1 : mul_one
|
a + a * -1 = a * 1 + a * -1 : mul_one
|
||||||
... = a * (1 + -1) : left_distrib
|
... = a * (1 + -1) : left_distrib
|
||||||
... = a * 0 : add.right_inv
|
... = a * 0 : add.right_inv
|
||||||
... = 0 : mul_zero,
|
... = 0 : mul_zero,
|
||||||
symm (neg_eq_of_add_eq_zero H)
|
symm (neg_eq_of_add_eq_zero this)
|
||||||
|
|
||||||
theorem ne_zero_and_ne_zero_of_mul_ne_zero {a b : A} (H : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 :=
|
theorem ne_zero_and_ne_zero_of_mul_ne_zero {a b : A} (H : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 :=
|
||||||
have Ha : a ≠ 0, from
|
have a ≠ 0, from
|
||||||
(assume Ha1 : a = 0,
|
(suppose a = 0,
|
||||||
have H1 : a * b = 0, by rewrite [Ha1, zero_mul],
|
have a * b = 0, by rewrite [this, zero_mul],
|
||||||
absurd H1 H),
|
absurd this H),
|
||||||
have Hb : b ≠ 0, from
|
have b ≠ 0, from
|
||||||
(assume Hb1 : b = 0,
|
(suppose b = 0,
|
||||||
have H1 : a * b = 0, by rewrite [Hb1, mul_zero],
|
have a * b = 0, by rewrite [this, mul_zero],
|
||||||
absurd H1 H),
|
absurd this H),
|
||||||
and.intro Ha Hb
|
and.intro `a ≠ 0` `b ≠ 0`
|
||||||
end
|
end
|
||||||
|
|
||||||
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
|
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
|
||||||
|
@ -265,31 +265,31 @@ section
|
||||||
|
|
||||||
theorem dvd_neg_iff_dvd : (a ∣ -b) ↔ (a ∣ b) :=
|
theorem dvd_neg_iff_dvd : (a ∣ -b) ↔ (a ∣ b) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H : (a ∣ -b),
|
(suppose a ∣ -b,
|
||||||
dvd.elim H
|
dvd.elim this
|
||||||
(take c, assume H' : -b = a * c,
|
(take c, suppose -b = a * c,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show a * -c = b,
|
(show a * -c = b,
|
||||||
by rewrite [-neg_mul_eq_mul_neg, -H', neg_neg])))
|
by rewrite [-neg_mul_eq_mul_neg, -this, neg_neg])))
|
||||||
(assume H : (a ∣ b),
|
(suppose a ∣ b,
|
||||||
dvd.elim H
|
dvd.elim this
|
||||||
(take c, assume H' : b = a * c,
|
(take c, suppose b = a * c,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show a * -c = -b,
|
(show a * -c = -b,
|
||||||
by rewrite [-neg_mul_eq_mul_neg, -H'])))
|
by rewrite [-neg_mul_eq_mul_neg, -this])))
|
||||||
|
|
||||||
theorem neg_dvd_iff_dvd : (-a ∣ b) ↔ (a ∣ b) :=
|
theorem neg_dvd_iff_dvd : (-a ∣ b) ↔ (a ∣ b) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H : (-a ∣ b),
|
(suppose -a ∣ b,
|
||||||
dvd.elim H
|
dvd.elim this
|
||||||
(take c, assume H' : b = -a * c,
|
(take c, suppose b = -a * c,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show a * -c = b, by rewrite [-neg_mul_comm, H'])))
|
(show a * -c = b, by rewrite [-neg_mul_comm, this])))
|
||||||
(assume H : (a ∣ b),
|
(suppose a ∣ b,
|
||||||
dvd.elim H
|
dvd.elim this
|
||||||
(take c, assume H' : b = a * c,
|
(take c, suppose b = a * c,
|
||||||
dvd.intro
|
dvd.intro
|
||||||
(show -a * -c = b, by rewrite [neg_mul_neg, H'])))
|
(show -a * -c = b, by rewrite [neg_mul_neg, this])))
|
||||||
|
|
||||||
theorem dvd_sub (H₁ : (a ∣ b)) (H₂ : (a ∣ c)) : (a ∣ b - c) :=
|
theorem dvd_sub (H₁ : (a ∣ b)) (H₂ : (a ∣ c)) : (a ∣ b - c) :=
|
||||||
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
|
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
|
||||||
|
@ -311,56 +311,56 @@ section
|
||||||
include s
|
include s
|
||||||
|
|
||||||
theorem mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
theorem mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||||||
assume H : a * b = 0,
|
suppose a * b = 0,
|
||||||
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
|
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this) (assume H3, H1 H3) (assume H4, H2 H4)
|
||||||
|
|
||||||
theorem eq_of_mul_eq_mul_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
|
theorem eq_of_mul_eq_mul_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
|
||||||
have H1 : b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
have b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||||||
have H2 : (b - c) * a = 0, using H1, by rewrite [mul_sub_right_distrib, H1],
|
have (b - c) * a = 0, using this, by rewrite [mul_sub_right_distrib, this],
|
||||||
have H3 : b - c = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
have b - c = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero this) Ha,
|
||||||
iff.elim_right !eq_iff_sub_eq_zero H3
|
iff.elim_right !eq_iff_sub_eq_zero this
|
||||||
|
|
||||||
theorem eq_of_mul_eq_mul_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
|
theorem eq_of_mul_eq_mul_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
|
||||||
have H1 : a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
have a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||||||
have H2 : a * (b - c) = 0, using H1, by rewrite [mul_sub_left_distrib, H1],
|
have a * (b - c) = 0, using this, by rewrite [mul_sub_left_distrib, this],
|
||||||
have H3 : b - c = 0, from or_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
have b - c = 0, from or_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero this) Ha,
|
||||||
iff.elim_right !eq_iff_sub_eq_zero H3
|
iff.elim_right !eq_iff_sub_eq_zero this
|
||||||
|
|
||||||
-- TODO: do we want the iff versions?
|
-- TODO: do we want the iff versions?
|
||||||
|
|
||||||
theorem mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b ∨ a = -b :=
|
theorem mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b ∨ a = -b :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(λ H : a * a = b * b,
|
(suppose a * a = b * b,
|
||||||
have aux₁ : (a - b) * (a + b) = 0,
|
have (a - b) * (a + b) = 0,
|
||||||
by rewrite [mul.comm, -mul_self_sub_mul_self_eq, H, sub_self],
|
by rewrite [mul.comm, -mul_self_sub_mul_self_eq, this, sub_self],
|
||||||
assert aux₂ : a - b = 0 ∨ a + b = 0, from !eq_zero_or_eq_zero_of_mul_eq_zero aux₁,
|
assert a - b = 0 ∨ a + b = 0, from !eq_zero_or_eq_zero_of_mul_eq_zero this,
|
||||||
or.elim aux₂
|
or.elim this
|
||||||
(λ H : a - b = 0, or.inl (eq_of_sub_eq_zero H))
|
(suppose a - b = 0, or.inl (eq_of_sub_eq_zero this))
|
||||||
(λ H : a + b = 0, or.inr (eq_neg_of_add_eq_zero H)))
|
(suppose a + b = 0, or.inr (eq_neg_of_add_eq_zero this)))
|
||||||
(λ H : a = b ∨ a = -b, or.elim H
|
(suppose a = b ∨ a = -b, or.elim this
|
||||||
(λ a_eq_b, by rewrite a_eq_b)
|
(suppose a = b, by rewrite this)
|
||||||
(λ a_eq_mb, by rewrite [a_eq_mb, neg_mul_neg]))
|
(suppose a = -b, by rewrite [this, neg_mul_neg]))
|
||||||
|
|
||||||
theorem mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ∨ a = -1 :=
|
theorem mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ∨ a = -1 :=
|
||||||
assert aux : a * a = 1 * 1 ↔ a = 1 ∨ a = -1, from mul_self_eq_mul_self_iff a 1,
|
assert a * a = 1 * 1 ↔ a = 1 ∨ a = -1, from mul_self_eq_mul_self_iff a 1,
|
||||||
by rewrite mul_one at aux; exact aux
|
by rewrite mul_one at this; exact this
|
||||||
|
|
||||||
-- TODO: c - b * c → c = 0 ∨ b = 1 and variants
|
-- TODO: c - b * c → c = 0 ∨ b = 1 and variants
|
||||||
|
|
||||||
theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : (a * b ∣ a * c)) : (b ∣ c) :=
|
theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : (a * b ∣ a * c)) : (b ∣ c) :=
|
||||||
dvd.elim Hdvd
|
dvd.elim Hdvd
|
||||||
(take d,
|
(take d,
|
||||||
assume H : a * c = a * b * d,
|
suppose a * c = a * b * d,
|
||||||
have H1 : b * d = c, from eq_of_mul_eq_mul_left Ha (mul.assoc a b d ▸ H⁻¹),
|
have b * d = c, from eq_of_mul_eq_mul_left Ha (mul.assoc a b d ▸ this⁻¹),
|
||||||
dvd.intro H1)
|
dvd.intro this)
|
||||||
|
|
||||||
theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : (b * a ∣ c * a)) : (b ∣ c) :=
|
theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : (b * a ∣ c * a)) : (b ∣ c) :=
|
||||||
dvd.elim Hdvd
|
dvd.elim Hdvd
|
||||||
(take d,
|
(take d,
|
||||||
assume H : c * a = b * a * d,
|
suppose c * a = b * a * d,
|
||||||
have H1 : b * d * a = c * a, from by rewrite [mul.right_comm, -H],
|
have b * d * a = c * a, from by rewrite [mul.right_comm, -this],
|
||||||
have H2 : b * d = c, from eq_of_mul_eq_mul_right Ha H1,
|
have b * d = c, from eq_of_mul_eq_mul_right Ha this,
|
||||||
dvd.intro H2)
|
dvd.intro this)
|
||||||
end
|
end
|
||||||
|
|
||||||
end algebra
|
end algebra
|
||||||
|
|
|
@ -59,10 +59,11 @@ namespace bool
|
||||||
|
|
||||||
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ∨ b = tt :=
|
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ∨ b = tt :=
|
||||||
bool.rec_on a
|
bool.rec_on a
|
||||||
(assume H : ff || b = tt,
|
(suppose ff || b = tt,
|
||||||
have Hb : b = tt, from !ff_bor ▸ H,
|
have b = tt, from !ff_bor ▸ this,
|
||||||
or.inr Hb)
|
or.inr this)
|
||||||
(assume H, or.inl rfl)
|
(suppose tt || b = tt,
|
||||||
|
or.inl rfl)
|
||||||
|
|
||||||
theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt :=
|
theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt :=
|
||||||
by rewrite H
|
by rewrite H
|
||||||
|
@ -98,13 +99,13 @@ namespace bool
|
||||||
|
|
||||||
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
|
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
|
||||||
or.elim (dichotomy a)
|
or.elim (dichotomy a)
|
||||||
(assume H0 : a = ff,
|
(suppose a = ff,
|
||||||
absurd
|
absurd
|
||||||
(calc ff = ff && b : ff_band
|
(calc ff = ff && b : ff_band
|
||||||
... = a && b : H0
|
... = a && b : this
|
||||||
... = tt : H)
|
... = tt : H)
|
||||||
ff_ne_tt)
|
ff_ne_tt)
|
||||||
(assume H1 : a = tt, H1)
|
(suppose a = tt, this)
|
||||||
|
|
||||||
theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt :=
|
theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt :=
|
||||||
by rewrite [H₁, H₂]
|
by rewrite [H₁, H₂]
|
||||||
|
|
|
@ -149,8 +149,8 @@ theorem nat_abs_of_nat (n : ℕ) : nat_abs (of_nat n) = n := rfl
|
||||||
|
|
||||||
theorem nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
theorem nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
||||||
int.cases_on a
|
int.cases_on a
|
||||||
(take m, assume H : nat_abs (of_nat m) = 0, congr_arg of_nat H)
|
(take m, suppose nat_abs (of_nat m) = 0, congr_arg of_nat this)
|
||||||
(take m', assume H : nat_abs (neg_succ_of_nat m') = 0, absurd H (succ_ne_zero _))
|
(take m', suppose nat_abs (neg_succ_of_nat m') = 0, absurd this (succ_ne_zero _))
|
||||||
|
|
||||||
/- int is a quotient of ordered pairs of natural numbers -/
|
/- int is a quotient of ordered pairs of natural numbers -/
|
||||||
|
|
||||||
|
@ -182,12 +182,12 @@ is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
||||||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : int.equiv p q) :
|
protected theorem equiv_cases {p q : ℕ × ℕ} (H : int.equiv p q) :
|
||||||
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
||||||
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
||||||
(assume H1: pr1 p ≥ pr2 p,
|
(suppose pr1 p ≥ pr2 p,
|
||||||
have H2 : pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right H1 (pr2 q),
|
have pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right this (pr2 q),
|
||||||
or.inl (and.intro H1 (le_of_add_le_add_left H2)))
|
or.inl (and.intro `pr1 p ≥ pr2 p` (le_of_add_le_add_left this)))
|
||||||
(assume H1: pr1 p < pr2 p,
|
(suppose pr1 p < pr2 p,
|
||||||
have H2 : pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H1 (pr2 q),
|
have pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right this (pr2 q),
|
||||||
or.inr (and.intro H1 (lt_of_add_lt_add_left H2)))
|
or.inr (and.intro `pr1 p < pr2 p` (lt_of_add_lt_add_left this)))
|
||||||
|
|
||||||
protected theorem equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl
|
protected theorem equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl
|
||||||
|
|
||||||
|
@ -209,15 +209,15 @@ int.cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl)
|
||||||
|
|
||||||
theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
||||||
or.elim (@le_or_gt n m)
|
or.elim (@le_or_gt n m)
|
||||||
(take H : m ≥ n,
|
(suppose m ≥ n,
|
||||||
have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
|
have repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge this ▸ rfl,
|
||||||
H1⁻¹ ▸
|
this⁻¹ ▸
|
||||||
(calc
|
(calc
|
||||||
m - n + n = m : sub_add_cancel H
|
m - n + n = m : sub_add_cancel `m ≥ n`
|
||||||
... = 0 + m : zero_add))
|
... = 0 + m : zero_add))
|
||||||
(take H : m < n,
|
(suppose H : m < n,
|
||||||
have H1 : repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
have repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
||||||
H1⁻¹ ▸
|
this⁻¹ ▸
|
||||||
(calc
|
(calc
|
||||||
0 + n = n : zero_add
|
0 + n = n : zero_add
|
||||||
... = n - m + m : sub_add_cancel (le_of_lt H)
|
... = n - m + m : sub_add_cancel (le_of_lt H)
|
||||||
|
|
|
@ -66,11 +66,11 @@ calc
|
||||||
... ≤ 0 : neg_nonpos_of_nonneg (div_nonneg Ha (neg_nonneg_of_nonpos Hb))
|
... ≤ 0 : neg_nonpos_of_nonneg (div_nonneg Ha (neg_nonneg_of_nonpos Hb))
|
||||||
|
|
||||||
theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a div b < 0 :=
|
theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a div b < 0 :=
|
||||||
have H1 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg Ha),
|
have -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg Ha),
|
||||||
have H2 : (-a - 1) div b + 1 > 0, from lt_add_one_of_le (div_nonneg H1 (le_of_lt Hb)),
|
have (-a - 1) div b + 1 > 0, from lt_add_one_of_le (div_nonneg this (le_of_lt Hb)),
|
||||||
calc
|
calc
|
||||||
a div b = -((-a - 1) div b + 1) : div_of_neg_of_pos Ha Hb
|
a div b = -((-a - 1) div b + 1) : div_of_neg_of_pos Ha Hb
|
||||||
... < 0 : neg_neg_of_pos H2
|
... < 0 : neg_neg_of_pos this
|
||||||
|
|
||||||
set_option pp.coercions true
|
set_option pp.coercions true
|
||||||
|
|
||||||
|
@ -84,10 +84,10 @@ theorem div_zero (a : ℤ) : a div 0 = 0 :=
|
||||||
by rewrite [↑divide, sign_zero, zero_mul]
|
by rewrite [↑divide, sign_zero, zero_mul]
|
||||||
|
|
||||||
theorem div_one (a : ℤ) :a div 1 = a :=
|
theorem div_one (a : ℤ) :a div 1 = a :=
|
||||||
assert H : 1 > 0, from dec_trivial,
|
assert 1 > 0, from dec_trivial,
|
||||||
int.cases_on a
|
int.cases_on a
|
||||||
(take m, by rewrite [-of_nat_div, nat.div_one])
|
(take m, by rewrite [-of_nat_div, nat.div_one])
|
||||||
(take m, by rewrite [!neg_succ_of_nat_div H, -of_nat_div, nat.div_one])
|
(take m, by rewrite [!neg_succ_of_nat_div this, -of_nat_div, nat.div_one])
|
||||||
|
|
||||||
theorem eq_div_mul_add_mod (a b : ℤ) : a = a div b * b + a mod b :=
|
theorem eq_div_mul_add_mod (a b : ℤ) : a = a div b * b + a mod b :=
|
||||||
!add.comm ▸ eq_add_of_sub_eq rfl
|
!add.comm ▸ eq_add_of_sub_eq rfl
|
||||||
|
@ -107,20 +107,20 @@ int.cases_on a
|
||||||
absurd H H1))
|
absurd H H1))
|
||||||
(take m,
|
(take m,
|
||||||
assume H : 0 ≤ -[1+m],
|
assume H : 0 ≤ -[1+m],
|
||||||
have H1 : ¬ (0 ≤ -[1+m]), from dec_trivial,
|
have ¬ (0 ≤ -[1+m]), from dec_trivial,
|
||||||
absurd H H1)
|
absurd H this)
|
||||||
|
|
||||||
theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a div b = 0 :=
|
theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a div b = 0 :=
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume H : b < 0,
|
(suppose b < 0,
|
||||||
assert H3 : a < -b, from abs_of_neg H ▸ H2,
|
assert a < -b, from abs_of_neg this ▸ H2,
|
||||||
calc
|
calc
|
||||||
a div b = - (a div -b) : by rewrite [div_neg, neg_neg]
|
a div b = - (a div -b) : by rewrite [div_neg, neg_neg]
|
||||||
... = 0 : by rewrite [div_eq_zero_of_lt H1 H3, neg_zero])
|
... = 0 : by rewrite [div_eq_zero_of_lt H1 this, neg_zero])
|
||||||
(assume H : b = 0, H⁻¹ ▸ !div_zero)
|
(suppose b = 0, this⁻¹ ▸ !div_zero)
|
||||||
(assume H : b > 0,
|
(suppose b > 0,
|
||||||
have H3 : a < b, from abs_of_pos H ▸ H2,
|
have a < b, from abs_of_pos this ▸ H2,
|
||||||
div_eq_zero_of_lt H1 H3)
|
div_eq_zero_of_lt H1 this)
|
||||||
|
|
||||||
private theorem add_mul_div_self_aux1 {a : ℤ} {k : ℕ} (n : ℕ)
|
private theorem add_mul_div_self_aux1 {a : ℤ} {k : ℕ} (n : ℕ)
|
||||||
(H1 : a ≥ 0) (H2 : #nat k > 0) :
|
(H1 : a ≥ 0) (H2 : #nat k > 0) :
|
||||||
|
|
|
@ -42,12 +42,12 @@ theorem gcd_abs_abs (a b : ℤ) : gcd (abs a) (abs b) = gcd a b :=
|
||||||
by rewrite [↑gcd, *nat_abs_abs]
|
by rewrite [↑gcd, *nat_abs_abs]
|
||||||
|
|
||||||
theorem gcd_of_ne_zero (a : ℤ) {b : ℤ} (H : b ≠ 0) : gcd a b = gcd b (abs a mod abs b) :=
|
theorem gcd_of_ne_zero (a : ℤ) {b : ℤ} (H : b ≠ 0) : gcd a b = gcd b (abs a mod abs b) :=
|
||||||
have H1 : nat_abs b ≠ nat.zero, from assume H', H (nat_abs_eq_zero H'),
|
have nat_abs b ≠ nat.zero, from assume H', H (nat_abs_eq_zero H'),
|
||||||
have H2 : (#nat nat_abs b > nat.zero), from nat.pos_of_ne_zero H1,
|
have (#nat nat_abs b > nat.zero), from nat.pos_of_ne_zero this,
|
||||||
assert H3 : nat.gcd (nat_abs a) (nat_abs b) = (#nat nat.gcd (nat_abs b) (nat_abs a mod nat_abs b)),
|
assert nat.gcd (nat_abs a) (nat_abs b) = (#nat nat.gcd (nat_abs b) (nat_abs a mod nat_abs b)),
|
||||||
from @nat.gcd_of_pos (nat_abs a) (nat_abs b) H2,
|
from @nat.gcd_of_pos (nat_abs a) (nat_abs b) this,
|
||||||
calc
|
calc
|
||||||
gcd a b = nat.gcd (nat_abs b) (#nat nat_abs a mod nat_abs b) : by rewrite [↑gcd, H3]
|
gcd a b = nat.gcd (nat_abs b) (#nat nat_abs a mod nat_abs b) : by rewrite [↑gcd, this]
|
||||||
... = gcd (abs b) (abs a mod abs b) :
|
... = gcd (abs b) (abs a mod abs b) :
|
||||||
by rewrite [↑gcd, -*of_nat_nat_abs, of_nat_mod]
|
by rewrite [↑gcd, -*of_nat_nat_abs, of_nat_mod]
|
||||||
... = gcd b (abs a mod abs b) : by rewrite [↑gcd, *nat_abs_abs]
|
... = gcd b (abs a mod abs b) : by rewrite [↑gcd, *nat_abs_abs]
|
||||||
|
@ -62,9 +62,9 @@ theorem gcd_self (a : ℤ) : gcd a a = abs a :=
|
||||||
by rewrite [↑gcd, nat.gcd_self, of_nat_nat_abs]
|
by rewrite [↑gcd, nat.gcd_self, of_nat_nat_abs]
|
||||||
|
|
||||||
theorem gcd_dvd_left (a b : ℤ) : gcd a b ∣ a :=
|
theorem gcd_dvd_left (a b : ℤ) : gcd a b ∣ a :=
|
||||||
have H : gcd a b ∣ abs a,
|
have gcd a b ∣ abs a,
|
||||||
by rewrite [↑gcd, -of_nat_nat_abs, of_nat_dvd_of_nat]; apply nat.gcd_dvd_left,
|
by rewrite [↑gcd, -of_nat_nat_abs, of_nat_dvd_of_nat]; apply nat.gcd_dvd_left,
|
||||||
iff.mp !dvd_abs_iff H
|
iff.mp !dvd_abs_iff this
|
||||||
|
|
||||||
theorem gcd_dvd_right (a b : ℤ) : gcd a b ∣ b :=
|
theorem gcd_dvd_right (a b : ℤ) : gcd a b ∣ b :=
|
||||||
by rewrite gcd.comm; apply gcd_dvd_left
|
by rewrite gcd.comm; apply gcd_dvd_left
|
||||||
|
@ -92,20 +92,20 @@ theorem gcd_mul_right (a b c : ℤ) : gcd (a * b) (c * b) = gcd a c * abs b :=
|
||||||
by rewrite [mul.comm a, mul.comm c, mul.comm (gcd a c), gcd_mul_left]
|
by rewrite [mul.comm a, mul.comm c, mul.comm (gcd a c), gcd_mul_left]
|
||||||
|
|
||||||
theorem gcd_pos_of_ne_zero_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : gcd a b > 0 :=
|
theorem gcd_pos_of_ne_zero_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : gcd a b > 0 :=
|
||||||
have H1 : gcd a b ≠ 0, from
|
have gcd a b ≠ 0, from
|
||||||
assume H2 : gcd a b = 0,
|
suppose gcd a b = 0,
|
||||||
have H3: 0 ∣ a, from H2 ▸ gcd_dvd_left a b,
|
have 0 ∣ a, from this ▸ gcd_dvd_left a b,
|
||||||
show false, from H (eq_zero_of_zero_dvd H3),
|
show false, from H (eq_zero_of_zero_dvd this),
|
||||||
lt_of_le_of_ne (gcd_nonneg a b) (ne.symm H1)
|
lt_of_le_of_ne (gcd_nonneg a b) (ne.symm this)
|
||||||
|
|
||||||
theorem gcd_pos_of_ne_zero_right (a : ℤ) {b : ℤ} (H : b ≠ 0) : gcd a b > 0 :=
|
theorem gcd_pos_of_ne_zero_right (a : ℤ) {b : ℤ} (H : b ≠ 0) : gcd a b > 0 :=
|
||||||
by rewrite gcd.comm; apply !gcd_pos_of_ne_zero_left H
|
by rewrite gcd.comm; apply !gcd_pos_of_ne_zero_left H
|
||||||
|
|
||||||
theorem eq_zero_of_gcd_eq_zero_left {a b : ℤ} (H : gcd a b = 0) : a = 0 :=
|
theorem eq_zero_of_gcd_eq_zero_left {a b : ℤ} (H : gcd a b = 0) : a = 0 :=
|
||||||
decidable.by_contradiction
|
decidable.by_contradiction
|
||||||
(assume H1 : a ≠ 0,
|
(suppose a ≠ 0,
|
||||||
have H2 : gcd a b > 0, from !gcd_pos_of_ne_zero_left H1,
|
have gcd a b > 0, from !gcd_pos_of_ne_zero_left this,
|
||||||
ne_of_lt H2 H⁻¹)
|
ne_of_lt this H⁻¹)
|
||||||
|
|
||||||
theorem eq_zero_of_gcd_eq_zero_right {a b : ℤ} (H : gcd a b = 0) : b = 0 :=
|
theorem eq_zero_of_gcd_eq_zero_right {a b : ℤ} (H : gcd a b = 0) : b = 0 :=
|
||||||
by rewrite gcd.comm at H; apply !eq_zero_of_gcd_eq_zero_left H
|
by rewrite gcd.comm at H; apply !eq_zero_of_gcd_eq_zero_left H
|
||||||
|
@ -113,15 +113,15 @@ by rewrite gcd.comm at H; apply !eq_zero_of_gcd_eq_zero_left H
|
||||||
theorem gcd_div {a b c : ℤ} (H1 : c ∣ a) (H2 : c ∣ b) :
|
theorem gcd_div {a b c : ℤ} (H1 : c ∣ a) (H2 : c ∣ b) :
|
||||||
gcd (a div c) (b div c) = gcd a b div (abs c) :=
|
gcd (a div c) (b div c) = gcd a b div (abs c) :=
|
||||||
decidable.by_cases
|
decidable.by_cases
|
||||||
(assume H3 : c = 0,
|
(suppose c = 0,
|
||||||
calc
|
calc
|
||||||
gcd (a div c) (b div c) = gcd 0 0 : by subst c; rewrite *div_zero
|
gcd (a div c) (b div c) = gcd 0 0 : by subst c; rewrite *div_zero
|
||||||
... = 0 : gcd_zero_left
|
... = 0 : gcd_zero_left
|
||||||
... = gcd a b div 0 : div_zero
|
... = gcd a b div 0 : div_zero
|
||||||
... = gcd a b div (abs c) : by subst c)
|
... = gcd a b div (abs c) : by subst c)
|
||||||
(assume H3 : c ≠ 0,
|
(suppose c ≠ 0,
|
||||||
have H4 : abs c ≠ 0, from assume H', H3 (eq_zero_of_abs_eq_zero H'),
|
have abs c ≠ 0, from assume H', this (eq_zero_of_abs_eq_zero H'),
|
||||||
eq.symm (div_eq_of_eq_mul_left H4
|
eq.symm (div_eq_of_eq_mul_left this
|
||||||
(eq.symm (calc
|
(eq.symm (calc
|
||||||
gcd (a div c) (b div c) * abs c = gcd (a div c * c) (b div c * c) : gcd_mul_right
|
gcd (a div c) (b div c) * abs c = gcd (a div c * c) (b div c * c) : gcd_mul_right
|
||||||
... = gcd a (b div c * c) : div_mul_cancel H1
|
... = gcd a (b div c * c) : div_mul_cancel H1
|
||||||
|
@ -314,25 +314,25 @@ coprime_of_coprime_mul_left_right (!mul.comm ▸ H)
|
||||||
theorem exists_eq_prod_and_dvd_and_dvd {a b c} (H : c ∣ a * b) :
|
theorem exists_eq_prod_and_dvd_and_dvd {a b c} (H : c ∣ a * b) :
|
||||||
∃ a' b', c = a' * b' ∧ a' ∣ a ∧ b' ∣ b :=
|
∃ a' b', c = a' * b' ∧ a' ∣ a ∧ b' ∣ b :=
|
||||||
decidable.by_cases
|
decidable.by_cases
|
||||||
(assume H1 : gcd c a = 0,
|
(suppose gcd c a = 0,
|
||||||
have H2 : c = 0, from eq_zero_of_gcd_eq_zero_left H1,
|
have c = 0, from eq_zero_of_gcd_eq_zero_left `gcd c a = 0`,
|
||||||
have H3 : a = 0, from eq_zero_of_gcd_eq_zero_right H1,
|
have a = 0, from eq_zero_of_gcd_eq_zero_right `gcd c a = 0`,
|
||||||
have H4 : c = 0 * b, from H2 ⬝ !zero_mul⁻¹,
|
have c = 0 * b, from `c = 0` ⬝ !zero_mul⁻¹,
|
||||||
have H5 : 0 ∣ a, from H3⁻¹ ▸ !dvd.refl,
|
have 0 ∣ a, from `a = 0`⁻¹ ▸ !dvd.refl,
|
||||||
have H6 : b ∣ b, from !dvd.refl,
|
have b ∣ b, from !dvd.refl,
|
||||||
exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6))))
|
exists.intro _ (exists.intro _ (and.intro `c = 0 * b` (and.intro `0 ∣ a` `b ∣ b`))))
|
||||||
(assume H1 : gcd c a ≠ 0,
|
(suppose gcd c a ≠ 0,
|
||||||
have H2 : gcd c a ∣ c, from !gcd_dvd_left,
|
have gcd c a ∣ c, from !gcd_dvd_left,
|
||||||
have H3 : c div gcd c a ∣ (a * b) div gcd c a, from div_dvd_div H2 H,
|
have H3 : c div gcd c a ∣ (a * b) div gcd c a, from div_dvd_div this H,
|
||||||
have H4 : (a * b) div gcd c a = (a div gcd c a) * b, from
|
have H4 : (a * b) div gcd c a = (a div gcd c a) * b, from
|
||||||
calc
|
calc
|
||||||
a * b div gcd c a = b * a div gcd c a : mul.comm
|
a * b div gcd c a = b * a div gcd c a : mul.comm
|
||||||
... = b * (a div gcd c a) : !mul_div_assoc !gcd_dvd_right
|
... = b * (a div gcd c a) : !mul_div_assoc !gcd_dvd_right
|
||||||
... = a div gcd c a * b : mul.comm,
|
... = a div gcd c a * b : mul.comm,
|
||||||
have H5 : c div gcd c a ∣ (a div gcd c a) * b, from H4 ▸ H3,
|
have H5 : c div gcd c a ∣ (a div gcd c a) * b, from H4 ▸ H3,
|
||||||
have H6 : coprime (c div gcd c a) (a div gcd c a), from coprime_div_gcd_div_gcd H1,
|
have H6 : coprime (c div gcd c a) (a div gcd c a), from coprime_div_gcd_div_gcd `gcd c a ≠ 0`,
|
||||||
have H7 : c div gcd c a ∣ b, from dvd_of_coprime_of_dvd_mul_left H6 H5,
|
have H7 : c div gcd c a ∣ b, from dvd_of_coprime_of_dvd_mul_left H6 H5,
|
||||||
have H8 : c = gcd c a * (c div gcd c a), from (mul_div_cancel' H2)⁻¹,
|
have H8 : c = gcd c a * (c div gcd c a), from (mul_div_cancel' `gcd c a ∣ c`)⁻¹,
|
||||||
exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))
|
exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))
|
||||||
|
|
||||||
end int
|
end int
|
||||||
|
|
|
@ -34,9 +34,9 @@ private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) :=
|
||||||
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
|
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
|
||||||
|
|
||||||
theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
||||||
have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
|
have b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
|
||||||
have H2 : nonneg n, from true.intro,
|
have nonneg n, from true.intro,
|
||||||
show nonneg (b - a), from H1⁻¹ ▸ H2
|
show nonneg (b - a), from `b - a = n`⁻¹ ▸ this
|
||||||
|
|
||||||
theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
||||||
obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H,
|
obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H,
|
||||||
|
@ -46,9 +46,9 @@ theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a :=
|
||||||
or.elim (nonneg_or_nonneg_neg (b - a))
|
or.elim (nonneg_or_nonneg_neg (b - a))
|
||||||
(assume H, or.inl H)
|
(assume H, or.inl H)
|
||||||
(assume H : nonneg (-(b - a)),
|
(assume H : nonneg (-(b - a)),
|
||||||
have H0 : -(b - a) = a - b, from neg_sub b a,
|
have -(b - a) = a - b, from neg_sub b a,
|
||||||
have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step
|
have nonneg (a - b), from this ▸ H,
|
||||||
or.inr H1)
|
or.inr this)
|
||||||
|
|
||||||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
|
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
|
||||||
obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H,
|
obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H,
|
||||||
|
@ -56,8 +56,8 @@ le.intro (Hk ▸ (of_nat_add m k)⁻¹)
|
||||||
|
|
||||||
theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
|
theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
|
||||||
obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
|
obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
|
||||||
have H1 : m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
|
have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
|
||||||
nat.le.intro H1
|
nat.le.intro this
|
||||||
|
|
||||||
theorem of_nat_le_of_nat (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
|
theorem of_nat_le_of_nat (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
|
||||||
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
|
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
|
||||||
|
@ -74,11 +74,11 @@ H ▸ lt_add_succ a n
|
||||||
|
|
||||||
theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b :=
|
theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b :=
|
||||||
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
||||||
have H2 : a + succ n = b, from
|
have a + succ n = b, from
|
||||||
calc
|
calc
|
||||||
a + succ n = a + 1 + n : by simp
|
a + succ n = a + 1 + n : by simp
|
||||||
... = b : Hn,
|
... = b : Hn,
|
||||||
exists.intro n H2
|
exists.intro n this
|
||||||
|
|
||||||
theorem of_nat_lt_of_nat (n m : ℕ) : of_nat n < of_nat m ↔ n < m :=
|
theorem of_nat_lt_of_nat (n m : ℕ) : of_nat n < of_nat m ↔ n < m :=
|
||||||
calc
|
calc
|
||||||
|
@ -101,47 +101,47 @@ le.intro (add_zero a)
|
||||||
theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
||||||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H1,
|
obtain (n : ℕ) (Hn : a + n = b), from le.elim H1,
|
||||||
obtain (m : ℕ) (Hm : b + m = c), from le.elim H2,
|
obtain (m : ℕ) (Hm : b + m = c), from le.elim H2,
|
||||||
have H3 : a + of_nat (n + m) = c, from
|
have a + of_nat (n + m) = c, from
|
||||||
calc
|
calc
|
||||||
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
|
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
|
||||||
... = a + n + m : (add.assoc a n m)⁻¹
|
... = a + n + m : (add.assoc a n m)⁻¹
|
||||||
... = b + m : {Hn}
|
... = b + m : {Hn}
|
||||||
... = c : Hm,
|
... = c : Hm,
|
||||||
le.intro H3
|
le.intro this
|
||||||
|
|
||||||
theorem le.antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b :=
|
theorem le.antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b :=
|
||||||
take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a),
|
take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a),
|
||||||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁,
|
obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁,
|
||||||
obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂,
|
obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂,
|
||||||
have H₃ : a + of_nat (n + m) = a + 0, from
|
have a + of_nat (n + m) = a + 0, from
|
||||||
calc
|
calc
|
||||||
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add
|
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add
|
||||||
... = a + n + m : add.assoc
|
... = a + n + m : add.assoc
|
||||||
... = b + m : Hn
|
... = b + m : Hn
|
||||||
... = a : Hm
|
... = a : Hm
|
||||||
... = a + 0 : add_zero,
|
... = a + 0 : add_zero,
|
||||||
have H₄ : of_nat (n + m) = of_nat 0, from add.left_cancel H₃,
|
have of_nat (n + m) = of_nat 0, from add.left_cancel this,
|
||||||
have H₅ : n + m = 0, from of_nat.inj H₄,
|
have n + m = 0, from of_nat.inj this,
|
||||||
have H₆ : n = 0, from nat.eq_zero_of_add_eq_zero_right H₅,
|
have n = 0, from nat.eq_zero_of_add_eq_zero_right this,
|
||||||
show a = b, from
|
show a = b, from
|
||||||
calc
|
calc
|
||||||
a = a + 0 : add_zero
|
a = a + 0 : add_zero
|
||||||
... = a + n : H₆
|
... = a + n : this
|
||||||
... = b : Hn
|
... = b : Hn
|
||||||
|
|
||||||
theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
||||||
(assume H : a < a,
|
(suppose a < a,
|
||||||
obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim H,
|
obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim this,
|
||||||
have H2 : a + succ n = a + 0, from
|
have a + succ n = a + 0, from
|
||||||
calc
|
calc
|
||||||
a + succ n = a : Hn
|
a + succ n = a : Hn
|
||||||
... = a + 0 : by simp,
|
... = a + 0 : by simp,
|
||||||
have H3 : nat.succ n = 0, from add.left_cancel H2,
|
have nat.succ n = 0, from add.left_cancel this,
|
||||||
have H4 : nat.succ n = 0, from of_nat.inj H3,
|
have nat.succ n = 0, from of_nat.inj this,
|
||||||
absurd H4 !succ_ne_zero)
|
absurd this !succ_ne_zero)
|
||||||
|
|
||||||
theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b :=
|
theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b :=
|
||||||
(assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b))
|
(suppose a = b, absurd (this ▸ H) (lt.irrefl b))
|
||||||
|
|
||||||
theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b :=
|
theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b :=
|
||||||
obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H,
|
obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H,
|
||||||
|
@ -151,22 +151,22 @@ theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
|
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
|
||||||
(assume H,
|
(assume H,
|
||||||
have H1 : a ≤ b, from and.elim_left H,
|
have a ≤ b, from and.elim_left H,
|
||||||
have H2 : a ≠ b, from and.elim_right H,
|
have a ≠ b, from and.elim_right H,
|
||||||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H1,
|
obtain (n : ℕ) (Hn : a + n = b), from le.elim `a ≤ b`,
|
||||||
have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)),
|
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||||||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero H3,
|
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||||||
lt.intro (Hk ▸ Hn))
|
lt.intro (Hk ▸ Hn))
|
||||||
|
|
||||||
theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) :=
|
theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H,
|
(assume H,
|
||||||
by_cases
|
by_cases
|
||||||
(assume H1 : a = b, or.inr H1)
|
(suppose a = b, or.inr this)
|
||||||
(assume H1 : a ≠ b,
|
(suppose a ≠ b,
|
||||||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
||||||
have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)),
|
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||||||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero H2,
|
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||||||
or.inl (lt.intro (Hk ▸ Hn))))
|
or.inl (lt.intro (Hk ▸ Hn))))
|
||||||
(assume H,
|
(assume H,
|
||||||
or.elim H
|
or.elim H
|
||||||
|
@ -208,8 +208,8 @@ obtain (m : ℕ) (Hm : 0 + nat.succ m = b), from lt.elim Hb,
|
||||||
lt.intro
|
lt.intro
|
||||||
(eq.symm
|
(eq.symm
|
||||||
(calc
|
(calc
|
||||||
a * b = (0 + nat.succ n) * b : Hn
|
a * b = (0 + nat.succ n) * b : Hn
|
||||||
... = nat.succ n * b : nat.zero_add
|
... = nat.succ n * b : nat.zero_add
|
||||||
... = nat.succ n * (0 + nat.succ m) : {Hm⁻¹}
|
... = nat.succ n * (0 + nat.succ m) : {Hm⁻¹}
|
||||||
... = nat.succ n * nat.succ m : nat.zero_add
|
... = nat.succ n * nat.succ m : nat.zero_add
|
||||||
... = of_nat (nat.succ n * nat.succ m) : of_nat_mul
|
... = of_nat (nat.succ n * nat.succ m) : of_nat_mul
|
||||||
|
@ -308,8 +308,8 @@ obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H,
|
||||||
exists.intro n (!zero_add ▸ (H1⁻¹))
|
exists.intro n (!zero_add ▸ (H1⁻¹))
|
||||||
|
|
||||||
theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) :=
|
theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) :=
|
||||||
have H2 : -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||||||
obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat H2,
|
obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat this,
|
||||||
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
|
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
|
||||||
|
|
||||||
theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a :=
|
theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a :=
|
||||||
|
@ -317,10 +317,10 @@ obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H,
|
||||||
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
|
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
|
||||||
|
|
||||||
theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
|
theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
|
||||||
have H1 : (-a) ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||||||
calc
|
calc
|
||||||
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
|
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
|
||||||
... = -a : of_nat_nat_abs_of_nonneg H1
|
... = -a : of_nat_nat_abs_of_nonneg this
|
||||||
|
|
||||||
theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b :=
|
theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b :=
|
||||||
or.elim (le.total 0 b)
|
or.elim (le.total 0 b)
|
||||||
|
@ -332,13 +332,13 @@ abs.by_cases rfl !nat_abs_neg
|
||||||
|
|
||||||
theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b :=
|
theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b :=
|
||||||
obtain n (H1 : a + 1 + n = b), from le.elim H,
|
obtain n (H1 : a + 1 + n = b), from le.elim H,
|
||||||
have H2 : a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
have a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||||||
lt.intro H2
|
lt.intro this
|
||||||
|
|
||||||
theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b :=
|
theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b :=
|
||||||
obtain n (H1 : a + succ n = b), from lt.elim H,
|
obtain n (H1 : a + succ n = b), from lt.elim H,
|
||||||
have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
have a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||||||
le.intro H2
|
le.intro this
|
||||||
|
|
||||||
theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 :=
|
theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 :=
|
||||||
lt_add_of_le_of_pos H trivial
|
lt_add_of_le_of_pos H trivial
|
||||||
|
@ -368,17 +368,17 @@ int.cases_on a
|
||||||
(take m H, exists.intro m rfl)
|
(take m H, exists.intro m rfl)
|
||||||
|
|
||||||
theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
|
theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
|
||||||
have H2 : a * b > 0, by rewrite H'; apply trivial,
|
have a * b > 0, by rewrite H'; apply trivial,
|
||||||
have H3 : b > 0, from pos_of_mul_pos_left H2 H,
|
have b > 0, from pos_of_mul_pos_left this H,
|
||||||
have H4 : a > 0, from pos_of_mul_pos_right H2 (le_of_lt H3),
|
have a > 0, from pos_of_mul_pos_right `a * b > 0` (le_of_lt `b > 0`),
|
||||||
or.elim (le_or_gt a 1)
|
or.elim (le_or_gt a 1)
|
||||||
(assume H5 : a ≤ 1,
|
(suppose a ≤ 1,
|
||||||
show a = 1, from le.antisymm H5 (add_one_le_of_lt H4))
|
show a = 1, from le.antisymm this (add_one_le_of_lt `a > 0`))
|
||||||
(assume H5 : a > 1,
|
(suppose a > 1,
|
||||||
assert H6 : a * b ≥ 2 * 1,
|
assert a * b ≥ 2 * 1,
|
||||||
from mul_le_mul (add_one_le_of_lt H5) (add_one_le_of_lt H3) trivial H,
|
from mul_le_mul (add_one_le_of_lt `a > 1`) (add_one_le_of_lt `b > 0`) trivial H,
|
||||||
have H7 : false, by rewrite [H' at H6]; apply H6,
|
have false, by rewrite [H' at this]; exact this,
|
||||||
false.elim H7)
|
false.elim this)
|
||||||
|
|
||||||
theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
|
theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
|
||||||
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
|
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
|
||||||
|
@ -392,7 +392,7 @@ eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
|
||||||
theorem eq_one_of_dvd_one {a : ℤ} (H : a ≥ 0) (H' : a ∣ 1) : a = 1 :=
|
theorem eq_one_of_dvd_one {a : ℤ} (H : a ≥ 0) (H' : a ∣ 1) : a = 1 :=
|
||||||
dvd.elim H'
|
dvd.elim H'
|
||||||
(take b,
|
(take b,
|
||||||
assume H1 : 1 = a * b,
|
suppose 1 = a * b,
|
||||||
eq_one_of_mul_eq_one_right H H1⁻¹)
|
eq_one_of_mul_eq_one_right H this⁻¹)
|
||||||
|
|
||||||
end int
|
end int
|
||||||
|
|
|
@ -25,8 +25,8 @@ private lemma lbp_zero : lbp 0 :=
|
||||||
private lemma lbp_succ {x : nat} : lbp x → ¬ p x → lbp (succ x) :=
|
private lemma lbp_succ {x : nat} : lbp x → ¬ p x → lbp (succ x) :=
|
||||||
λ lx npx y yltsx,
|
λ lx npx y yltsx,
|
||||||
or.elim (eq_or_lt_of_le (le_of_succ_le_succ yltsx))
|
or.elim (eq_or_lt_of_le (le_of_succ_le_succ yltsx))
|
||||||
(λ yeqx, by substvars; assumption)
|
(suppose y = x, by substvars; assumption)
|
||||||
(λ yltx, lx y yltx)
|
(suppose y < x, lx y this)
|
||||||
|
|
||||||
private definition gtb (a b : nat) : Prop :=
|
private definition gtb (a b : nat) : Prop :=
|
||||||
a > b ∧ lbp a
|
a > b ∧ lbp a
|
||||||
|
@ -43,10 +43,10 @@ private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x :=
|
||||||
assume h,
|
assume h,
|
||||||
acc.intro x (λ (y : nat) (l : y ≺ x),
|
acc.intro x (λ (y : nat) (l : y ≺ x),
|
||||||
by_cases
|
by_cases
|
||||||
(assume yeqx : y = succ x, by substvars; assumption)
|
(suppose y = succ x, by substvars; assumption)
|
||||||
(assume ynex : y ≠ succ x,
|
(suppose y ≠ succ x,
|
||||||
have x < y, from and.elim_left l,
|
have x < y, from and.elim_left l,
|
||||||
have succ x < y, from lt_of_le_and_ne this (ne.symm ynex),
|
have succ x < y, from lt_of_le_and_ne this (ne.symm `y ≠ succ x`),
|
||||||
acc.inv h (and.intro this (and.elim_right l))))
|
acc.inv h (and.intro this (and.elim_right l))))
|
||||||
|
|
||||||
private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y :=
|
private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y :=
|
||||||
|
@ -58,10 +58,10 @@ acc.intro y (λ (z : nat) (l : z ≺ y),
|
||||||
private lemma acc_of_acc_of_lt : ∀ {x y : nat}, acc gtb x → y < x → acc gtb y
|
private lemma acc_of_acc_of_lt : ∀ {x y : nat}, acc gtb x → y < x → acc gtb y
|
||||||
| 0 y a0 ylt0 := absurd ylt0 !not_lt_zero
|
| 0 y a0 ylt0 := absurd ylt0 !not_lt_zero
|
||||||
| (succ x) y asx yltsx :=
|
| (succ x) y asx yltsx :=
|
||||||
assert ax : acc gtb x, from acc_of_acc_succ asx,
|
assert acc gtb x, from acc_of_acc_succ asx,
|
||||||
by_cases
|
by_cases
|
||||||
(suppose y = x, by substvars; assumption)
|
(suppose y = x, by substvars; assumption)
|
||||||
(suppose y ≠ x, acc_of_acc_of_lt ax (lt_of_le_and_ne (le_of_lt_succ yltsx) this))
|
(suppose y ≠ x, acc_of_acc_of_lt `acc gtb x` (lt_of_le_and_ne (le_of_lt_succ yltsx) this))
|
||||||
|
|
||||||
parameter (ex : ∃ a, p a)
|
parameter (ex : ∃ a, p a)
|
||||||
parameter [dp : decidable_pred p]
|
parameter [dp : decidable_pred p]
|
||||||
|
@ -81,14 +81,14 @@ private definition find.F (x : nat) : (Π x₁, x₁ ≺ x → lbp x₁ → {a :
|
||||||
match x with
|
match x with
|
||||||
| 0 := λ f l0, by_cases
|
| 0 := λ f l0, by_cases
|
||||||
(λ p0 : p 0, tag 0 p0)
|
(λ p0 : p 0, tag 0 p0)
|
||||||
(λ np0 : ¬ p 0,
|
(suppose ¬ p 0,
|
||||||
have l₁ : lbp 1, from lbp_succ l0 np0,
|
have lbp 1, from lbp_succ l0 this,
|
||||||
have 1 ≺ 0, from and.intro (lt.base 0) l₁,
|
have 1 ≺ 0, from and.intro (lt.base 0) `lbp 1`,
|
||||||
f 1 this l₁)
|
f 1 `1 ≺ 0` `lbp 1`)
|
||||||
| (succ n) := λ f lsn, by_cases
|
| (succ n) := λ f lsn, by_cases
|
||||||
(λ psn : p (succ n), tag (succ n) psn)
|
(suppose p (succ n), tag (succ n) this)
|
||||||
(λ npsn : ¬ p (succ n),
|
(suppose ¬ p (succ n),
|
||||||
have lss : lbp (succ (succ n)), from lbp_succ lsn npsn,
|
have lss : lbp (succ (succ n)), from lbp_succ lsn this,
|
||||||
have succ (succ n) ≺ succ n, from and.intro (lt.base (succ n)) lss,
|
have succ (succ n) ≺ succ n, from and.intro (lt.base (succ n)) lss,
|
||||||
f (succ (succ n)) this lss)
|
f (succ (succ n)) this lss)
|
||||||
end
|
end
|
||||||
|
|
|
@ -15,12 +15,12 @@ namespace pos_num
|
||||||
theorem succ_bit0 (a : pos_num) : succ (bit0 a) = bit1 a
|
theorem succ_bit0 (a : pos_num) : succ (bit0 a) = bit1 a
|
||||||
|
|
||||||
theorem ne_of_bit0_ne_bit0 {a b : pos_num} (H₁ : bit0 a ≠ bit0 b) : a ≠ b :=
|
theorem ne_of_bit0_ne_bit0 {a b : pos_num} (H₁ : bit0 a ≠ bit0 b) : a ≠ b :=
|
||||||
assume H : a = b,
|
suppose a = b,
|
||||||
absurd rfl (H ▸ H₁)
|
absurd rfl (this ▸ H₁)
|
||||||
|
|
||||||
theorem ne_of_bit1_ne_bit1 {a b : pos_num} (H₁ : bit1 a ≠ bit1 b) : a ≠ b :=
|
theorem ne_of_bit1_ne_bit1 {a b : pos_num} (H₁ : bit1 a ≠ bit1 b) : a ≠ b :=
|
||||||
assume H : a = b,
|
suppose a = b,
|
||||||
absurd rfl (H ▸ H₁)
|
absurd rfl (this ▸ H₁)
|
||||||
|
|
||||||
theorem pred_succ : ∀ (a : pos_num), pred (succ a) = a
|
theorem pred_succ : ∀ (a : pos_num), pred (succ a) = a
|
||||||
| one := rfl
|
| one := rfl
|
||||||
|
|
|
@ -29,32 +29,32 @@ theorem equiv.refl [refl] (a : prerat) : a ≡ a := rfl
|
||||||
theorem equiv.symm [symm] {a b : prerat} (H : a ≡ b) : b ≡ a := !eq.symm H
|
theorem equiv.symm [symm] {a b : prerat} (H : a ≡ b) : b ≡ a := !eq.symm H
|
||||||
|
|
||||||
theorem num_eq_zero_of_equiv {a b : prerat} (H : a ≡ b) (na_zero : num a = 0) : num b = 0 :=
|
theorem num_eq_zero_of_equiv {a b : prerat} (H : a ≡ b) (na_zero : num a = 0) : num b = 0 :=
|
||||||
have H1 : num a * denom b = 0, from !zero_mul ▸ na_zero ▸ rfl,
|
have num a * denom b = 0, from !zero_mul ▸ na_zero ▸ rfl,
|
||||||
have H2 : num b * denom a = 0, from H ▸ H1,
|
have num b * denom a = 0, from H ▸ this,
|
||||||
show num b = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) (ne_of_gt (denom_pos a))
|
show num b = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero this) (ne_of_gt (denom_pos a))
|
||||||
|
|
||||||
theorem num_pos_of_equiv {a b : prerat} (H : a ≡ b) (na_pos : num a > 0) : num b > 0 :=
|
theorem num_pos_of_equiv {a b : prerat} (H : a ≡ b) (na_pos : num a > 0) : num b > 0 :=
|
||||||
have H1 : num a * denom b > 0, from mul_pos na_pos (denom_pos b),
|
have num a * denom b > 0, from mul_pos na_pos (denom_pos b),
|
||||||
have H2 : num b * denom a > 0, from H ▸ H1,
|
have num b * denom a > 0, from H ▸ this,
|
||||||
show num b > 0, from pos_of_mul_pos_right H2 (le_of_lt (denom_pos a))
|
show num b > 0, from pos_of_mul_pos_right this (le_of_lt (denom_pos a))
|
||||||
|
|
||||||
theorem num_neg_of_equiv {a b : prerat} (H : a ≡ b) (na_neg : num a < 0) : num b < 0 :=
|
theorem num_neg_of_equiv {a b : prerat} (H : a ≡ b) (na_neg : num a < 0) : num b < 0 :=
|
||||||
have H1 : num a * denom b < 0, from mul_neg_of_neg_of_pos na_neg (denom_pos b),
|
have num a * denom b < 0, from mul_neg_of_neg_of_pos na_neg (denom_pos b),
|
||||||
have H2 : -(-num b * denom a) < 0, from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_neg⁻¹ ▸ H ▸ H1,
|
have -(-num b * denom a) < 0, from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_neg⁻¹ ▸ H ▸ this,
|
||||||
have H3 : -num b > 0, from pos_of_mul_pos_right (pos_of_neg_neg H2) (le_of_lt (denom_pos a)),
|
have -num b > 0, from pos_of_mul_pos_right (pos_of_neg_neg this) (le_of_lt (denom_pos a)),
|
||||||
neg_of_neg_pos H3
|
neg_of_neg_pos this
|
||||||
|
|
||||||
theorem equiv_of_num_eq_zero {a b : prerat} (H1 : num a = 0) (H2 : num b = 0) : a ≡ b :=
|
theorem equiv_of_num_eq_zero {a b : prerat} (H1 : num a = 0) (H2 : num b = 0) : a ≡ b :=
|
||||||
by rewrite [↑equiv, H1, H2, *zero_mul]
|
by rewrite [↑equiv, H1, H2, *zero_mul]
|
||||||
|
|
||||||
theorem equiv.trans [trans] {a b c : prerat} (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c :=
|
theorem equiv.trans [trans] {a b c : prerat} (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c :=
|
||||||
decidable.by_cases
|
decidable.by_cases
|
||||||
(assume b0 : num b = 0,
|
(suppose num b = 0,
|
||||||
have a0 : num a = 0, from num_eq_zero_of_equiv (equiv.symm H1) b0,
|
have num a = 0, from num_eq_zero_of_equiv (equiv.symm H1) `num b = 0`,
|
||||||
have c0 : num c = 0, from num_eq_zero_of_equiv H2 b0,
|
have num c = 0, from num_eq_zero_of_equiv H2 `num b = 0`,
|
||||||
equiv_of_num_eq_zero a0 c0)
|
equiv_of_num_eq_zero `num a = 0` `num c = 0`)
|
||||||
(assume bn0 : num b ≠ 0,
|
(suppose num b ≠ 0,
|
||||||
have H3 : num b * denom b ≠ 0, from mul_ne_zero bn0 (ne_of_gt (denom_pos b)),
|
have H3 : num b * denom b ≠ 0, from mul_ne_zero this (ne_of_gt (denom_pos b)),
|
||||||
have H4 : (num b * denom b) * (num a * denom c) = (num b * denom b) * (num c * denom a),
|
have H4 : (num b * denom b) * (num a * denom c) = (num b * denom b) * (num c * denom a),
|
||||||
from calc
|
from calc
|
||||||
(num b * denom b) * (num a * denom c) = (num a * denom b) * (num b * denom c) :
|
(num b * denom b) * (num a * denom c) = (num a * denom b) * (num b * denom c) :
|
||||||
|
@ -122,17 +122,17 @@ theorem inv_zero' : inv zero = zero := inv_zero (of_nat_succ_pos nat.zero)
|
||||||
|
|
||||||
theorem inv_of_pos {n d : int} (np : n > 0) (dp : d > 0) : inv (mk n d dp) ≡ mk d n np :=
|
theorem inv_of_pos {n d : int} (np : n > 0) (dp : d > 0) : inv (mk n d dp) ≡ mk d n np :=
|
||||||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||||||
have H1 : (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
have (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||||||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt H1,
|
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||||||
have H2 : d * n = d * nat.succ k, by rewrite [Hn', Hk],
|
have d * n = d * nat.succ k, by rewrite [Hn', Hk],
|
||||||
Hn'⁻¹ ▸ (Hk⁻¹ ▸ H2)
|
Hn'⁻¹ ▸ (Hk⁻¹ ▸ this)
|
||||||
|
|
||||||
theorem inv_neg {n d : int} (np : n > 0) (dp : d > 0) : inv (mk (-n) d dp) ≡ mk (-d) n np :=
|
theorem inv_neg {n d : int} (np : n > 0) (dp : d > 0) : inv (mk (-n) d dp) ≡ mk (-d) n np :=
|
||||||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||||||
have H1 : (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
have (#nat n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||||||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt H1,
|
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||||||
have H2 : -d * n = -d * nat.succ k, by rewrite [Hn', Hk],
|
have -d * n = -d * nat.succ k, by rewrite [Hn', Hk],
|
||||||
have H3 : inv (mk -[1+k] d dp) ≡ mk (-d) n np, from H2,
|
have H3 : inv (mk -[1+k] d dp) ≡ mk (-d) n np, from this,
|
||||||
have H4 : -[1+k] = -n, from calc
|
have H4 : -[1+k] = -n, from calc
|
||||||
-[1+k] = -(nat.succ k) : rfl
|
-[1+k] = -(nat.succ k) : rfl
|
||||||
... = -n : by rewrite [Hk⁻¹, Hn'],
|
... = -n : by rewrite [Hk⁻¹, Hn'],
|
||||||
|
@ -140,9 +140,9 @@ H4 ▸ H3
|
||||||
|
|
||||||
theorem inv_of_neg {n d : int} (nn : n < 0) (dp : d > 0) :
|
theorem inv_of_neg {n d : int} (nn : n < 0) (dp : d > 0) :
|
||||||
inv (mk n d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn) :=
|
inv (mk n d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn) :=
|
||||||
have H : inv (mk (-(-n)) d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn),
|
have inv (mk (-(-n)) d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn),
|
||||||
from inv_neg (neg_pos_of_neg nn) dp,
|
from inv_neg (neg_pos_of_neg nn) dp,
|
||||||
!neg_neg ▸ H
|
!neg_neg ▸ this
|
||||||
|
|
||||||
/- operations respect equiv -/
|
/- operations respect equiv -/
|
||||||
|
|
||||||
|
|
|
@ -650,10 +650,10 @@ lt.by_cases
|
||||||
exact !he₂ jlti₁
|
exact !he₂ jlti₁
|
||||||
end)
|
end)
|
||||||
(λ i₂lti₁ : i₂ < i₁,
|
(λ i₂lti₁ : i₂ < i₁,
|
||||||
assert aux : nth i₂ s₁ = nth i₂ s₂, from he₁ _ i₂lti₁,
|
assert nth i₂ s₁ = nth i₂ s₂, from he₁ _ i₂lti₁,
|
||||||
begin
|
begin
|
||||||
existsi i₂, split,
|
existsi i₂, split,
|
||||||
{rewrite aux, exact hlt₂},
|
{rewrite this, exact hlt₂},
|
||||||
{intro j jlti₂, transitivity nth j s₂,
|
{intro j jlti₂, transitivity nth j s₂,
|
||||||
exact !he₁ (lt.trans jlti₂ i₂lti₁),
|
exact !he₁ (lt.trans jlti₂ i₂lti₁),
|
||||||
exact !he₂ jlti₂}
|
exact !he₂ jlti₂}
|
||||||
|
|
|
@ -30,8 +30,8 @@ definition mult (p n : ℕ) : ℕ := fix (mult.F p) n
|
||||||
|
|
||||||
theorem mult_rec {p n : ℕ} (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p ∣ n) :
|
theorem mult_rec {p n : ℕ} (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p ∣ n) :
|
||||||
mult p n = succ (mult p (n div p)) :=
|
mult p n = succ (mult p (n div p)) :=
|
||||||
have H : (p > 1 ∧ n > 0) ∧ p ∣ n, from and.intro (and.intro pgt1 ngt0) pdivn,
|
have (p > 1 ∧ n > 0) ∧ p ∣ n, from and.intro (and.intro pgt1 ngt0) pdivn,
|
||||||
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos H)
|
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos this)
|
||||||
|
|
||||||
private theorem mult_base {p n : ℕ} (H : ¬ ((p > 1 ∧ n > 0) ∧ p ∣ n)) :
|
private theorem mult_base {p n : ℕ} (H : ¬ ((p > 1 ∧ n > 0) ∧ p ∣ n)) :
|
||||||
mult p n = 0 :=
|
mult p n = 0 :=
|
||||||
|
@ -57,11 +57,11 @@ by rewrite (mult_rec pgt1 npos pdvdn); apply succ_pos
|
||||||
|
|
||||||
theorem not_dvd_of_mult_eq_zero {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) :
|
theorem not_dvd_of_mult_eq_zero {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) :
|
||||||
¬ p ∣ n :=
|
¬ p ∣ n :=
|
||||||
assume pdvdn : p ∣ n,
|
suppose p ∣ n,
|
||||||
ne_of_gt (mult_pos_of_dvd pgt1 npos pdvdn) H
|
ne_of_gt (mult_pos_of_dvd pgt1 npos this) H
|
||||||
|
|
||||||
theorem dvd_of_mult_pos {p n : ℕ} (H : mult p n > 0) : p ∣ n :=
|
theorem dvd_of_mult_pos {p n : ℕ} (H : mult p n > 0) : p ∣ n :=
|
||||||
by_contradiction (assume npdvdn : ¬ p ∣ n, ne_of_gt H (mult_eq_zero_of_not_dvd npdvdn))
|
by_contradiction (suppose ¬ p ∣ n, ne_of_gt H (mult_eq_zero_of_not_dvd this))
|
||||||
|
|
||||||
/- properties of mult -/
|
/- properties of mult -/
|
||||||
|
|
||||||
|
@ -76,28 +76,28 @@ begin
|
||||||
{rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd},
|
{rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd},
|
||||||
show p ^ (mult p n) ∣ n, from dvd.elim pdvdn
|
show p ^ (mult p n) ∣ n, from dvd.elim pdvdn
|
||||||
(take n',
|
(take n',
|
||||||
assume Hn' : n = p * n',
|
suppose n = p * n',
|
||||||
have ppos : p > 0, from lt.trans zero_lt_one pgt1,
|
have p > 0, from lt.trans zero_lt_one pgt1,
|
||||||
assert ndivpeq : n div p = n', from !div_eq_of_eq_mul_right ppos Hn',
|
assert n div p = n', from !div_eq_of_eq_mul_right this `n = p * n'`,
|
||||||
assert ndivplt : n' < n,
|
assert n' < n,
|
||||||
by rewrite -ndivpeq; apply mult_rec_decreasing pgt1 npos,
|
by rewrite -this; apply mult_rec_decreasing pgt1 npos,
|
||||||
begin
|
begin
|
||||||
rewrite [mult_rec pgt1 npos pdvdn, ndivpeq, pow_succ', Hn'],
|
rewrite [mult_rec pgt1 npos pdvdn, `n div p = n'`, pow_succ'], subst n,
|
||||||
apply mul_dvd_mul !dvd.refl,
|
apply mul_dvd_mul !dvd.refl,
|
||||||
apply ih _ ndivplt
|
apply ih _ this
|
||||||
end)
|
end)
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem mult_one_right (p : ℕ) : mult p 1 = 0:=
|
theorem mult_one_right (p : ℕ) : mult p 1 = 0:=
|
||||||
assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd,
|
assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd,
|
||||||
or.elim (le_or_gt p 1)
|
or.elim (le_or_gt p 1)
|
||||||
(assume H1 : p ≤ 1, by rewrite [!mult_eq_zero_of_le_one H1])
|
(suppose p ≤ 1, by rewrite [!mult_eq_zero_of_le_one this])
|
||||||
(assume H1 : p > 1,
|
(suppose p > 1,
|
||||||
by_contradiction
|
by_contradiction
|
||||||
assume H2 : mult p 1 ≠ 0,
|
(suppose mult p 1 ≠ 0,
|
||||||
have H3 : mult p 1 > 0, from pos_of_ne_zero H2,
|
have mult p 1 > 0, from pos_of_ne_zero this,
|
||||||
assert H4 : p^(mult p 1) > 1, from pow_gt_one H1 H3,
|
assert p^(mult p 1) > 1, from pow_gt_one `p > 1` this,
|
||||||
show false, by rewrite H at H4; apply !lt.irrefl H4)
|
show false, by rewrite H at this; apply !lt.irrefl this))
|
||||||
|
|
||||||
private theorem mult_pow_mul {p n : ℕ} (i : ℕ) (pgt1 : p > 1) (npos : n > 0) :
|
private theorem mult_pow_mul {p n : ℕ} (i : ℕ) (pgt1 : p > 1) (npos : n > 0) :
|
||||||
mult p (p^i * n) = i + mult p n :=
|
mult p (p^i * n) = i + mult p n :=
|
||||||
|
@ -117,31 +117,31 @@ by rewrite [-(mul_one (p^i)), mult_pow_mul i pgt1 zero_lt_one, mult_one_right]
|
||||||
theorem le_mult {p i n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i ∣ n) : i ≤ mult p n :=
|
theorem le_mult {p i n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i ∣ n) : i ≤ mult p n :=
|
||||||
dvd.elim pidvd
|
dvd.elim pidvd
|
||||||
(take m,
|
(take m,
|
||||||
assume neq : n = p^i * m,
|
suppose n = p^i * m,
|
||||||
assert mpos : m > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
assert m > 0, from pos_of_mul_pos_left (this ▸ npos),
|
||||||
by rewrite [neq, mult_pow_mul i pgt1 mpos]; apply le_add_right)
|
by subst n; rewrite [mult_pow_mul i pgt1 this]; apply le_add_right)
|
||||||
|
|
||||||
theorem not_dvd_div_pow_mult {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) : ¬ p ∣ n div p^(mult p n) :=
|
theorem not_dvd_div_pow_mult {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) : ¬ p ∣ n div p^(mult p n) :=
|
||||||
assume pdvd : p ∣ n div p^(mult p n),
|
assume pdvd : p ∣ n div p^(mult p n),
|
||||||
obtain m (H : n div p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd,
|
obtain m (H : n div p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd,
|
||||||
assert neq : n = p^(succ (mult p n)) * m, from
|
assert n = p^(succ (mult p n)) * m, from
|
||||||
calc
|
calc
|
||||||
n = p^mult p n * (n div p^mult p n) : by rewrite (mul_div_cancel' !pow_mult_dvd)
|
n = p^mult p n * (n div p^mult p n) : by rewrite (mul_div_cancel' !pow_mult_dvd)
|
||||||
... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ, mul.assoc],
|
... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ, mul.assoc],
|
||||||
have H1 : p^(succ (mult p n)) ∣ n, by rewrite neq at {2}; apply dvd_mul_right,
|
have p^(succ (mult p n)) ∣ n, by rewrite this at {2}; apply dvd_mul_right,
|
||||||
have H2 : succ (mult p n) ≤ mult p n, from le_mult pgt1 npos H1,
|
have succ (mult p n) ≤ mult p n, from le_mult pgt1 npos this,
|
||||||
show false, from !not_succ_le_self H2
|
show false, from !not_succ_le_self this
|
||||||
|
|
||||||
theorem mult_mul {p m n : ℕ} (primep : prime p) (mpos : m > 0) (npos : n > 0) :
|
theorem mult_mul {p m n : ℕ} (primep : prime p) (mpos : m > 0) (npos : n > 0) :
|
||||||
mult p (m * n) = mult p m + mult p n :=
|
mult p (m * n) = mult p m + mult p n :=
|
||||||
let m' := m div p^mult p m, n' := n div p^mult p n in
|
let m' := m div p^mult p m, n' := n div p^mult p n in
|
||||||
assert pgt1 : p > 1, from gt_one_of_prime primep,
|
assert p > 1, from gt_one_of_prime primep,
|
||||||
assert meq : m = p^mult p m * m', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
assert meq : m = p^mult p m * m', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||||||
assert neq : n = p^mult p n * n', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
assert neq : n = p^mult p n * n', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||||||
have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos),
|
have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos),
|
||||||
have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
||||||
have npdvdm' : ¬ p ∣ m', from !not_dvd_div_pow_mult pgt1 mpos,
|
have npdvdm' : ¬ p ∣ m', from !not_dvd_div_pow_mult `p > 1` mpos,
|
||||||
have npdvdn' : ¬ p ∣ n', from !not_dvd_div_pow_mult pgt1 npos,
|
have npdvdn' : ¬ p ∣ n', from !not_dvd_div_pow_mult `p > 1` npos,
|
||||||
assert npdvdm'n' : ¬ p ∣ m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn',
|
assert npdvdm'n' : ¬ p ∣ m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn',
|
||||||
assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos,
|
assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos,
|
||||||
assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n',
|
assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n',
|
||||||
|
@ -150,7 +150,7 @@ calc
|
||||||
by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc,
|
by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc,
|
||||||
mul.comm (n div _), -neq]
|
mul.comm (n div _), -neq]
|
||||||
... = mult p m + mult p n :
|
... = mult p m + mult p n :
|
||||||
by rewrite [!mult_pow_mul pgt1 m'n'pos, multm'n']
|
by rewrite [!mult_pow_mul `p > 1` m'n'pos, multm'n']
|
||||||
|
|
||||||
theorem dvd_of_forall_prime_mult_le {m n : ℕ} (mpos : m > 0)
|
theorem dvd_of_forall_prime_mult_le {m n : ℕ} (mpos : m > 0)
|
||||||
(H : ∀ {p}, prime p → mult p m ≤ mult p n) :
|
(H : ∀ {p}, prime p → mult p m ≤ mult p n) :
|
||||||
|
|
|
@ -66,7 +66,7 @@ assume h d, obtain h₁ h₂, from h, h₂ m d
|
||||||
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
|
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
|
||||||
assume ipp pos h,
|
assume ipp pos h,
|
||||||
have p ≥ 2, from ge_two_of_prime ipp,
|
have p ≥ 2, from ge_two_of_prime ipp,
|
||||||
have p ∣ i, from dvd_of_mod_eq_zero h,
|
have p ∣ i, from dvd_of_mod_eq_zero h,
|
||||||
have p ≤ i, from le_of_dvd pos this,
|
have p ≤ i, from le_of_dvd pos this,
|
||||||
lt_of_succ_le (le.trans `2 ≤ p` this)
|
lt_of_succ_le (le.trans `2 ≤ p` this)
|
||||||
|
|
||||||
|
@ -88,14 +88,15 @@ assume h₁ h₂, ex_of_sub (sub_dvd_of_not_prime h₁ h₂)
|
||||||
|
|
||||||
definition sub_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≥ 2 ∧ m < n} :=
|
definition sub_dvd_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → {m | m ∣ n ∧ m ≥ 2 ∧ m < n} :=
|
||||||
assume h₁ h₂,
|
assume h₁ h₂,
|
||||||
have n_ne_0 : n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end,
|
have n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end,
|
||||||
obtain m m_dvd_n m_ne_1 m_ne_n, from sub_dvd_of_not_prime h₁ h₂,
|
obtain m m_dvd_n m_ne_1 m_ne_n, from sub_dvd_of_not_prime h₁ h₂,
|
||||||
assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) n_ne_0 end,
|
assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) `n ≠ 0` end,
|
||||||
begin
|
begin
|
||||||
existsi m, split, assumption,
|
existsi m, split, assumption,
|
||||||
split,
|
split,
|
||||||
{cases m with m, exact absurd rfl m_ne_0, cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))},
|
{cases m with m, exact absurd rfl m_ne_0,
|
||||||
{have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero n_ne_0) m_dvd_n,
|
cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))},
|
||||||
|
{have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero `n ≠ 0`) m_dvd_n,
|
||||||
exact lt_of_le_and_ne m_le_n m_ne_n}
|
exact lt_of_le_and_ne m_le_n m_ne_n}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -106,14 +107,14 @@ definition sub_prime_and_dvd {n : nat} : n ≥ 2 → {p | prime p ∧ p ∣ n} :
|
||||||
nat.strong_rec_on n
|
nat.strong_rec_on n
|
||||||
(take n,
|
(take n,
|
||||||
assume ih : ∀ m, m < n → m ≥ 2 → {p | prime p ∧ p ∣ m},
|
assume ih : ∀ m, m < n → m ≥ 2 → {p | prime p ∧ p ∣ m},
|
||||||
assume n_ge_2 : n ≥ 2,
|
suppose n ≥ 2,
|
||||||
by_cases
|
by_cases
|
||||||
(λ h : prime n, subtype.tag n (and.intro h (dvd.refl n)))
|
(suppose prime n, subtype.tag n (and.intro this (dvd.refl n)))
|
||||||
(λ h : ¬ prime n,
|
(suppose ¬ prime n,
|
||||||
obtain m m_dvd_n m_ge_2 m_lt_n, from sub_dvd_of_not_prime2 n_ge_2 h,
|
obtain m m_dvd_n m_ge_2 m_lt_n, from sub_dvd_of_not_prime2 `n ≥ 2` this,
|
||||||
obtain p (hp : prime p) (p_dvd_m : p ∣ m), from ih m m_lt_n m_ge_2,
|
obtain p (hp : prime p) (p_dvd_m : p ∣ m), from ih m m_lt_n m_ge_2,
|
||||||
have p_dvd_n : p ∣ n, from dvd.trans p_dvd_m m_dvd_n,
|
have p ∣ n, from dvd.trans p_dvd_m m_dvd_n,
|
||||||
subtype.tag p (and.intro hp p_dvd_n)))
|
subtype.tag p (and.intro hp this)))
|
||||||
|
|
||||||
lemma ex_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n :=
|
lemma ex_prime_and_dvd {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p ∣ n :=
|
||||||
assume h, ex_of_sub (sub_prime_and_dvd h)
|
assume h, ex_of_sub (sub_prime_and_dvd h)
|
||||||
|
|
Loading…
Reference in a new issue