fix(library/unifier): bug in process_flex_rigid, also cleanup the code and break it into different cases

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-06-28 11:18:22 -07:00
parent 7075f6e94a
commit 0e015974ca
3 changed files with 178 additions and 64 deletions

View file

@ -70,8 +70,8 @@ theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
:= subst H (refl a)
-- theorem congr1 {A B : Type} {f g : A → B} (H : f = g) (a : A) : f a = g a
-- := subst H (refl (f a)) -- TODO: check unifier does not work in this case
theorem congr1 {A B : Type} {f g : A → B} (H : f = g) (a : A) : f a = g a
:= subst H (refl (f a))
theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= subst H (refl (f a))

View file

@ -601,7 +601,6 @@ public:
return pp_def_type_mismatch(fmt, env, o, n, r_t, r_v_type);
});
}
auto p = solve().pull();
lean_assert(p);
substitution s = p->first;

View file

@ -870,16 +870,138 @@ struct unifier_fn {
return is_eq_cnstr(c) && is_meta(cnstr_lhs_expr(c)) && is_meta(cnstr_rhs_expr(c));
}
/** \brief Process a flex rigid constraint */
bool process_flex_rigid(expr const & lhs, expr const & rhs, justification const & j) {
lean_assert(is_meta(lhs));
/**
\brief Given
m := a metavariable ?m
margs := [a_1 ... a_k]
rhs := (g b_1 ... b_n)
Then create the constraints
(?m_1 a_1 ... a_k) =?= b_1
...
(?m_n a_1 ... a_k) =?= b_n
?m =?= fun (x_1 ... x_k), f (?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k)
Remark: The term f is:
- g (if g is a constant), OR
- variable (if g is a local constant equal to a_i)
*/
constraints mk_flex_rigid_app_cnstrs(expr const & m, buffer<expr> const & margs,
expr const & f, expr const & rhs, justification const & j) {
lean_assert(is_metavar(m));
lean_assert(is_app(rhs));
lean_assert(is_constant(f) || is_var(f));
buffer<constraint> cs;
expr const & mtype = mlocal_type(m);
buffer<expr> rargs;
get_app_args(rhs, rargs);
buffer<expr> sargs;
for (expr const & rarg : rargs) {
expr maux = mk_aux_metavar_for(mtype);
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), rarg, j));
sargs.push_back(mk_app_vars(maux, margs.size()));
}
expr v = mk_app(f, sargs);
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
return to_list(cs.begin(), cs.end());
}
/**
\brief Given
m := a metavariable ?m
margs := [a_1 ... a_k]
rhs := (fun/Pi (y : A), B y)
Then create the constraints
(?m_1 a_1 ... a_k) =?= A
(?m_2 a_1 ... a_k l) =?= B l
?m =?= fun (x_1 ... x_k), fun/Pi (y : ?m_1 x_1 ... x_k), ?m_2 x_1 ... x_k y
where l is a fresh local constant.
*/
constraints mk_bindings_imitation(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j) {
lean_assert(is_metavar(m));
lean_assert(is_binding(rhs));
expr const & mtype = mlocal_type(m);
expr maux1 = mk_aux_metavar_for(mtype);
buffer<constraint> cs;
cs.push_back(mk_eq_cnstr(mk_app(maux1, margs), binding_domain(rhs), j));
expr dontcare;
expr tmp_pi = mk_pi(binding_name(rhs), mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context
expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context
expr maux2 = mk_aux_metavar_for(mtype2);
expr new_local = mk_local(m_ngen.next(), binding_name(rhs), binding_domain(rhs));
cs.push_back(mk_eq_cnstr(mk_app(mk_app(maux2, margs), new_local), instantiate(binding_body(rhs), new_local), j));
expr v = update_binding(rhs, mk_app_vars(maux1, margs.size()), mk_app_vars(maux2, margs.size() + 1));
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
return to_list(cs.begin(), cs.end());
}
/**
\brief Given
m := a metavariable ?m
rhs := sort, constant
Then solve (?m a_1 ... a_k) =?= rhs, by returning the constraint
?m =?= fun (x1 ... x_k), rhs
*/
constraints mk_simple_imitation(expr const & m, expr const & rhs, justification const & j) {
lean_assert(is_metavar(m));
lean_assert(is_sort(rhs) || is_constant(rhs));
expr const & mtype = mlocal_type(m);
expr v = mk_lambda_for(mtype, rhs);
return constraints(mk_eq_cnstr(m, v, j));
}
/**
\brief Given
m := a metavariable ?m
margs := [a_1 ... a_k]
rhs := M(b_1 ... b_n) where M is a macro with arguments b_1 ... b_n
Then create the constraints
(?m_1 a_1 ... a_k) =?= b_1
...
(?m_n a_1 ... a_k) =?= b_n
?m =?= fun (x_1 ... x_k), M((?m_1 x_1 ... x_k) ... (?m_n x_1 ... x_k))
*/
constraints mk_macro_imitation(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j) {
lean_assert(is_metavar(m));
lean_assert(is_macro(rhs));
expr const & mtype = mlocal_type(m);
buffer<constraint> cs;
// create an auxiliary metavariable for each macro argument
buffer<expr> sargs;
for (unsigned i = 0; i < macro_num_args(rhs); i++) {
expr maux = mk_aux_metavar_for(mtype);
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), macro_arg(rhs, i), j));
sargs.push_back(mk_app_vars(maux, margs.size()));
}
expr v = mk_macro(macro_def(rhs), sargs.size(), sargs.data());
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
return to_list(cs.begin(), cs.end());
}
/**
Given,
m := a metavariable ?m
margs := [a_1 ... a_k]
We say a unification problem (?m a_1 ... a_k) =?= rhs uses "simple projections" IF
rhs is NOT an application.
If rhs is a local constant and a_i == rhs, then we add the constraint
?m =?= fun x_1 ... x_k, x_i
to alts as a possible solution when a_i is the same local constant.
If rhs is not a local constant, then for each a_i that is NOT a local constant, we add the constraints
?m =?= fun x_1 ... x_k, x_i
a_i =?= rhs
to alts as a possible solution when a_i is the same local constant.
*/
void add_simple_projections(expr const & m, buffer<expr> const & margs, expr const & rhs, justification const & j,
buffer<constraints> & alts) {
lean_assert(is_metavar(m));
lean_assert(!is_meta(rhs));
buffer<expr> margs;
expr m = get_app_args(lhs, margs);
expr mtype = mlocal_type(m);
buffer<constraints> alts;
lean_assert(!is_var(rhs)); // rhs can't be a free variable (this is an invariant of the approach we are using).
// Add Projections to alts
lean_assert(!is_app(rhs));
expr const & mtype = mlocal_type(m);
unsigned vidx = margs.size() - 1;
for (expr const & marg : margs) {
if (!is_local(marg) && !is_local(rhs)) {
@ -894,59 +1016,52 @@ struct unifier_fn {
}
vidx--;
}
// Add Imitation to alts
buffer<constraint> cs;
bool imitate = true;
if (is_app(rhs)) {
buffer<expr> rargs;
expr f = get_app_args(rhs, rargs);
// create an auxiliary metavariable for each rhs argument
buffer<expr> sargs;
for (expr const & rarg : rargs) {
expr maux = mk_aux_metavar_for(mtype);
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), rarg, j));
sargs.push_back(mk_app_vars(maux, margs.size()));
}
f = abstract_locals(f, margs.size(), margs.data());
if (!has_local(f)) {
expr v = mk_app(f, sargs);
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
/** \brief Process a flex rigid constraint */
bool process_flex_rigid(expr const & lhs, expr const & rhs, justification const & j) {
lean_assert(is_meta(lhs));
lean_assert(!is_meta(rhs));
buffer<expr> margs;
expr m = get_app_args(lhs, margs);
for (expr & marg : margs)
marg = m_tc.whnf(marg);
buffer<constraints> alts;
switch (rhs.kind()) {
case expr_kind::Var: case expr_kind::Meta:
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::Local:
add_simple_projections(m, margs, rhs, j, alts);
break;
case expr_kind::Sort: case expr_kind::Constant:
add_simple_projections(m, margs, rhs, j, alts);
alts.push_back(mk_simple_imitation(m, rhs, j));
break;
case expr_kind::Pi: case expr_kind::Lambda:
add_simple_projections(m, margs, rhs, j, alts);
alts.push_back(mk_bindings_imitation(m, margs, rhs, j));
break;
case expr_kind::Macro:
add_simple_projections(m, margs, rhs, j, alts);
alts.push_back(mk_macro_imitation(m, margs, rhs, j));
break;
case expr_kind::App: {
expr const & f = get_app_fn(rhs);
lean_assert(is_constant(f) || is_local(f));
if (is_local(f)) {
unsigned vidx = margs.size() - 1;
for (expr const & marg : margs) {
if (is_local(marg) && mlocal_name(marg) == mlocal_name(f))
alts.push_back(mk_flex_rigid_app_cnstrs(m, margs, mk_var(vidx), rhs, j));
vidx--;
}
} else if (is_binding(rhs)) {
expr maux1 = mk_aux_metavar_for(mtype);
cs.push_back(mk_eq_cnstr(mk_app(maux1, margs), binding_domain(rhs), j));
expr dontcare;
expr tmp_pi = mk_pi(binding_name(rhs), mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context
expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context
expr maux2 = mk_aux_metavar_for(mtype2);
expr new_local = mk_local(m_ngen.next(), binding_name(rhs), binding_domain(rhs));
cs.push_back(mk_eq_cnstr(mk_app(mk_app(maux2, margs), new_local), instantiate(binding_body(rhs), new_local), j));
expr v = update_binding(rhs, mk_app_vars(maux1, margs.size()), mk_app_vars(maux2, margs.size() + 1));
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
} else if (is_sort(rhs) || is_constant(rhs)) {
expr v = mk_lambda_for(mtype, rhs);
cs.push_back(mk_eq_cnstr(m, v, j));
} else if (is_local(rhs)) {
// We don't imitate when the right-hand-side is a local constant.
// The term (fun (ctx), local) is not well-formed.
imitate = false;
} else if (is_constant(f)) {
alts.push_back(mk_flex_rigid_app_cnstrs(m, margs, f, rhs, j));
} else {
lean_assert(is_macro(rhs));
// create an auxiliary metavariable for each macro argument
buffer<expr> sargs;
for (unsigned i = 0; i < macro_num_args(rhs); i++) {
expr maux = mk_aux_metavar_for(mtype);
cs.push_back(mk_eq_cnstr(mk_app(maux, margs), macro_arg(rhs, i), j));
sargs.push_back(mk_app_vars(maux, margs.size()));
lean_unreachable(); // LCOV_EXCL_LINE
}
expr v = mk_macro(macro_def(rhs), sargs.size(), sargs.data());
v = mk_lambda_for(mtype, v);
cs.push_back(mk_eq_cnstr(m, v, j));
}
if (imitate)
alts.push_back(to_list(cs.begin(), cs.end()));
break;
}}
if (alts.empty()) {
set_conflict(j);