feat(library/standard): add classes for relations
This commit is contained in:
parent
6a6c9f472e
commit
0ea2d287e1
9 changed files with 346 additions and 146 deletions
|
@ -15,7 +15,6 @@ import logic
|
||||||
-- import if -- for find
|
-- import if -- for find
|
||||||
|
|
||||||
using nat
|
using nat
|
||||||
using congr
|
|
||||||
using eq_proofs
|
using eq_proofs
|
||||||
|
|
||||||
namespace list
|
namespace list
|
||||||
|
|
|
@ -4,7 +4,7 @@
|
||||||
-- Author: Leonardo de Moura
|
-- Author: Leonardo de Moura
|
||||||
----------------------------------------------------------------------------------------------------
|
----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
import logic.connectives.eq logic.connectives.function
|
import logic.connectives.eq struc.function
|
||||||
using function
|
using function
|
||||||
|
|
||||||
-- Function extensionality
|
-- Function extensionality
|
||||||
|
|
|
@ -1,140 +0,0 @@
|
||||||
----------------------------------------------------------------------------------------------------
|
|
||||||
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
||||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
|
||||||
--- Author: Jeremy Avigad
|
|
||||||
----------------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
import logic.connectives.basic logic.connectives.function
|
|
||||||
using function
|
|
||||||
namespace congr
|
|
||||||
|
|
||||||
-- TODO: move this somewhere else
|
|
||||||
abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x
|
|
||||||
|
|
||||||
|
|
||||||
-- Congruence classes for unary and binary functions
|
|
||||||
-- -------------------------------------------------
|
|
||||||
|
|
||||||
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
|
||||||
(f : T1 → T2) : Prop :=
|
|
||||||
| mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → class R1 R2 f
|
|
||||||
|
|
||||||
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
|
||||||
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
|
||||||
class_rec id C x y
|
|
||||||
|
|
||||||
-- to trigger class inference
|
|
||||||
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
|
||||||
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
|
||||||
class_rec id C x y
|
|
||||||
|
|
||||||
-- for binary functions
|
|
||||||
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
|
||||||
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
|
|
||||||
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
|
|
||||||
class2 R1 R2 R3 f
|
|
||||||
|
|
||||||
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
|
||||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
|
||||||
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
|
|
||||||
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
|
||||||
class2_rec id C x1 y1 x2 y2
|
|
||||||
|
|
||||||
|
|
||||||
-- General tools to build instances
|
|
||||||
-- --------------------------------
|
|
||||||
|
|
||||||
theorem compose
|
|
||||||
{T2 : Type} {R2 : T2 → T2 → Prop}
|
|
||||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
|
||||||
{g : T2 → T3} (C2 : congr.class R2 R3 g)
|
|
||||||
{{T1 : Type}} {R1 : T1 → T1 → Prop}
|
|
||||||
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
|
|
||||||
congr.class R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H))
|
|
||||||
|
|
||||||
theorem compose21
|
|
||||||
{T2 : Type} {R2 : T2 → T2 → Prop}
|
|
||||||
{T3 : Type} {R3 : T3 → T3 → Prop}
|
|
||||||
{T4 : Type} {R4 : T4 → T4 → Prop}
|
|
||||||
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
|
|
||||||
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
|
||||||
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
|
|
||||||
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
|
|
||||||
congr.class R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
|
||||||
|
|
||||||
theorem trivial [instance] {T : Type} (R : T → T → Prop) : class R R id :=
|
|
||||||
mk (take x y H, H)
|
|
||||||
|
|
||||||
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) :
|
|
||||||
∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), class R1 R2 (function.const T1 c) :=
|
|
||||||
take T1 R1 c, mk (take x y H1, H c)
|
|
||||||
|
|
||||||
|
|
||||||
-- instances for logic
|
|
||||||
-- -------------------
|
|
||||||
|
|
||||||
theorem congr_not : congr.class iff iff not :=
|
|
||||||
congr.mk
|
|
||||||
(take a b,
|
|
||||||
assume H : a ↔ b, iff_intro
|
|
||||||
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
|
|
||||||
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
|
|
||||||
|
|
||||||
theorem congr_and : congr.class2 iff iff iff and :=
|
|
||||||
congr.mk2
|
|
||||||
(take a1 b1 a2 b2,
|
|
||||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
|
||||||
iff_intro
|
|
||||||
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
|
|
||||||
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
|
|
||||||
|
|
||||||
theorem congr_or : congr.class2 iff iff iff or :=
|
|
||||||
congr.mk2
|
|
||||||
(take a1 b1 a2 b2,
|
|
||||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
|
||||||
iff_intro
|
|
||||||
(assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
|
|
||||||
(assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
|
|
||||||
|
|
||||||
theorem congr_imp : congr.class2 iff iff iff imp :=
|
|
||||||
congr.mk2
|
|
||||||
(take a1 b1 a2 b2,
|
|
||||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
|
||||||
iff_intro
|
|
||||||
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
|
|
||||||
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
|
|
||||||
|
|
||||||
theorem congr_iff : congr.class2 iff iff iff iff :=
|
|
||||||
congr.mk2
|
|
||||||
(take a1 b1 a2 b2,
|
|
||||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
|
||||||
iff_intro
|
|
||||||
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
|
|
||||||
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
|
|
||||||
|
|
||||||
theorem congr_const_iff [instance] := congr.const iff iff_refl
|
|
||||||
theorem congr_not_compose [instance] := congr.compose congr_not
|
|
||||||
theorem congr_and_compose [instance] := congr.compose21 congr_and
|
|
||||||
theorem congr_or_compose [instance] := congr.compose21 congr_or
|
|
||||||
theorem congr_implies_compose [instance] := congr.compose21 congr_imp
|
|
||||||
theorem congr_iff_compose [instance] := congr.compose21 congr_iff
|
|
||||||
|
|
||||||
theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : class R iff P}
|
|
||||||
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (app C H) H1
|
|
||||||
|
|
||||||
theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) :=
|
|
||||||
congr.infer iff iff _ H1
|
|
||||||
|
|
||||||
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
|
||||||
subst_iff H1 H2
|
|
||||||
|
|
||||||
-- TODO: move these to new file
|
|
||||||
|
|
||||||
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
|
||||||
calc
|
|
||||||
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _
|
|
||||||
... ↔ a ∨ (c ∨ b) : congr.infer iff iff _ (or_comm b c)
|
|
||||||
... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _)
|
|
||||||
|
|
||||||
-- TODO: add or_left_comm, and_right_comm, and_left_comm
|
|
||||||
end congr
|
|
|
@ -4,9 +4,9 @@ logic.connectives
|
||||||
Logical operations and connectives.
|
Logical operations and connectives.
|
||||||
|
|
||||||
* [prop](prop.lean) : the type Prop
|
* [prop](prop.lean) : the type Prop
|
||||||
* [function](function.lean) : notation for functions
|
|
||||||
* [basic](basic.lean) : propositional connectives
|
* [basic](basic.lean) : propositional connectives
|
||||||
* [eq](eq.lean) : equality and disequality
|
* [eq](eq.lean) : equality and disequality
|
||||||
* [cast](cast.lean) : casts and heterogeneous equality
|
* [cast](cast.lean) : casts and heterogeneous equality
|
||||||
* [quantifiers](quantifiers.lean) : existential and universal quantifiers
|
* [quantifiers](quantifiers.lean) : existential and universal quantifiers
|
||||||
* [if](if.lean) : if-then-else
|
* [if](if.lean) : if-then-else
|
||||||
|
* [instances](instances.lean) : type class instances
|
167
library/standard/logic/connectives/instances.lean
Normal file
167
library/standard/logic/connectives/instances.lean
Normal file
|
@ -0,0 +1,167 @@
|
||||||
|
----------------------------------------------------------------------------------------------------
|
||||||
|
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
--- Author: Jeremy Avigad
|
||||||
|
----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
import logic.connectives.basic logic.connectives.eq struc.relation
|
||||||
|
|
||||||
|
using relation
|
||||||
|
|
||||||
|
-- Congruences for logic
|
||||||
|
-- ---------------------
|
||||||
|
|
||||||
|
theorem congr_not : congr.class iff iff not :=
|
||||||
|
congr.mk
|
||||||
|
(take a b,
|
||||||
|
assume H : a ↔ b, iff_intro
|
||||||
|
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
|
||||||
|
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
|
||||||
|
|
||||||
|
theorem congr_and : congr.class2 iff iff iff and :=
|
||||||
|
congr.mk2
|
||||||
|
(take a1 b1 a2 b2,
|
||||||
|
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||||
|
iff_intro
|
||||||
|
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
|
||||||
|
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||||||
|
|
||||||
|
theorem congr_or : congr.class2 iff iff iff or :=
|
||||||
|
congr.mk2
|
||||||
|
(take a1 b1 a2 b2,
|
||||||
|
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||||
|
iff_intro
|
||||||
|
(assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
|
||||||
|
(assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||||||
|
|
||||||
|
theorem congr_imp : congr.class2 iff iff iff imp :=
|
||||||
|
congr.mk2
|
||||||
|
(take a1 b1 a2 b2,
|
||||||
|
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||||
|
iff_intro
|
||||||
|
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
|
||||||
|
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
|
||||||
|
|
||||||
|
theorem congr_iff : congr.class2 iff iff iff iff :=
|
||||||
|
congr.mk2
|
||||||
|
(take a1 b1 a2 b2,
|
||||||
|
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||||
|
iff_intro
|
||||||
|
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
|
||||||
|
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
|
||||||
|
|
||||||
|
-- theorem congr_const_iff [instance] := congr.const iff iff_refl
|
||||||
|
theorem congr_not_compose [instance] := congr.compose congr_not
|
||||||
|
theorem congr_and_compose [instance] := congr.compose21 congr_and
|
||||||
|
theorem congr_or_compose [instance] := congr.compose21 congr_or
|
||||||
|
theorem congr_implies_compose [instance] := congr.compose21 congr_imp
|
||||||
|
theorem congr_iff_compose [instance] := congr.compose21 congr_iff
|
||||||
|
|
||||||
|
|
||||||
|
-- Generalized substitution
|
||||||
|
-- ------------------------
|
||||||
|
|
||||||
|
namespace gensubst
|
||||||
|
|
||||||
|
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
|
||||||
|
-- information to infer an mp-like relation.
|
||||||
|
|
||||||
|
theorem subst {T : Type} {R : T → T → Prop} {P : T → Prop} {C : congr.class R iff P}
|
||||||
|
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1
|
||||||
|
|
||||||
|
infixr `▸`:75 := subst
|
||||||
|
|
||||||
|
end -- gensubst
|
||||||
|
|
||||||
|
|
||||||
|
-- = is an equivalence relation
|
||||||
|
-- ----------------------------
|
||||||
|
|
||||||
|
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive.class (@eq T) :=
|
||||||
|
relation.is_reflexive.mk (@refl T)
|
||||||
|
|
||||||
|
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric.class (@eq T) :=
|
||||||
|
relation.is_symmetric.mk (@symm T)
|
||||||
|
|
||||||
|
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive.class (@eq T) :=
|
||||||
|
relation.is_transitive.mk (@trans T)
|
||||||
|
|
||||||
|
|
||||||
|
-- iff is an equivalence relation
|
||||||
|
-- ------------------------------
|
||||||
|
|
||||||
|
theorem is_reflexive_iff [instance] : relation.is_reflexive.class iff :=
|
||||||
|
relation.is_reflexive.mk (@iff_refl)
|
||||||
|
|
||||||
|
theorem is_symmetric_iff [instance] : relation.is_symmetric.class iff :=
|
||||||
|
relation.is_symmetric.mk (@iff_symm)
|
||||||
|
|
||||||
|
theorem is_transitive_iff [instance] : relation.is_transitive.class iff :=
|
||||||
|
relation.is_transitive.mk (@iff_trans)
|
||||||
|
|
||||||
|
|
||||||
|
-- Mp-like for iff
|
||||||
|
-- ---------------
|
||||||
|
|
||||||
|
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like.class H :=
|
||||||
|
relation.mp_like.mk (iff_elim_left H)
|
||||||
|
|
||||||
|
|
||||||
|
-- Tests
|
||||||
|
-- -----
|
||||||
|
|
||||||
|
namespace logic_instances_tests
|
||||||
|
|
||||||
|
section
|
||||||
|
|
||||||
|
using relation.operations
|
||||||
|
|
||||||
|
theorem test1 (a b : Prop) (H : a ↔ b) (H1 : a) : b := mp H H1
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
section
|
||||||
|
|
||||||
|
using gensubst
|
||||||
|
|
||||||
|
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||||
|
subst H1 H2
|
||||||
|
|
||||||
|
theorem test3 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
||||||
|
H1 ▸ H2
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem test4 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) :=
|
||||||
|
congr.infer iff iff (λa, (a ∨ c → ¬(d → a))) H1
|
||||||
|
|
||||||
|
|
||||||
|
section
|
||||||
|
|
||||||
|
using relation.symbols
|
||||||
|
|
||||||
|
theorem test5 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
|
||||||
|
H1 ⬝ H2⁻¹ ⬝ H3
|
||||||
|
|
||||||
|
theorem test6 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d :=
|
||||||
|
H1 ⬝ (H2⁻¹ ⬝ H3)
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
-- Boolean calculations
|
||||||
|
-- --------------------
|
||||||
|
|
||||||
|
-- TODO: move these to new file
|
||||||
|
-- TODO: declare trans
|
||||||
|
|
||||||
|
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
||||||
|
calc
|
||||||
|
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _
|
||||||
|
... ↔ a ∨ (c ∨ b) : congr.infer iff iff _ (or_comm b c)
|
||||||
|
... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _)
|
||||||
|
|
||||||
|
-- TODO: add or_left_comm, and_right_comm, and_left_comm
|
|
@ -5,5 +5,5 @@
|
||||||
----------------------------------------------------------------------------------------------------
|
----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
import logic.connectives.basic logic.connectives.eq logic.connectives.quantifiers
|
import logic.connectives.basic logic.connectives.eq logic.connectives.quantifiers
|
||||||
import logic.classes.decidable logic.classes.inhabited logic.classes.congr
|
import logic.classes.decidable logic.classes.inhabited logic.connectives.instances
|
||||||
import logic.connectives.if
|
import logic.connectives.if
|
172
library/standard/struc/relation.lean
Normal file
172
library/standard/struc/relation.lean
Normal file
|
@ -0,0 +1,172 @@
|
||||||
|
----------------------------------------------------------------------------------------------------
|
||||||
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
-- Author: Jeremy Avigad
|
||||||
|
----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
import logic.connectives.prop
|
||||||
|
|
||||||
|
-- General properties of relations
|
||||||
|
-- -------------------------------
|
||||||
|
|
||||||
|
namespace relation
|
||||||
|
|
||||||
|
abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x
|
||||||
|
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀x y, R x y → R y x
|
||||||
|
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀x y z, R x y → R y z → R x z
|
||||||
|
|
||||||
|
namespace is_reflexive
|
||||||
|
|
||||||
|
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||||
|
| mk : reflexive R → class R
|
||||||
|
|
||||||
|
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) : reflexive R
|
||||||
|
:= class_rec (λu, u) C
|
||||||
|
|
||||||
|
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} : reflexive R
|
||||||
|
:= class_rec (λu, u) C
|
||||||
|
|
||||||
|
end -- is_reflexive
|
||||||
|
|
||||||
|
namespace is_symmetric
|
||||||
|
|
||||||
|
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||||
|
| mk : symmetric R → class R
|
||||||
|
|
||||||
|
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y : T⦄ (H : R x y) : R y x
|
||||||
|
:= class_rec (λu, u) C x y H
|
||||||
|
|
||||||
|
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y : T⦄ (H : R x y) : R y x
|
||||||
|
:= class_rec (λu, u) C x y H
|
||||||
|
|
||||||
|
end -- is_symmetric
|
||||||
|
|
||||||
|
namespace is_transitive
|
||||||
|
|
||||||
|
inductive class {T : Type} (R : T → T → Type) : Prop :=
|
||||||
|
| mk : transitive R → class R
|
||||||
|
|
||||||
|
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y z : T⦄ (H1 : R x y)
|
||||||
|
(H2 : R y z) : R x z
|
||||||
|
:= class_rec (λu, u) C x y z H1 H2
|
||||||
|
|
||||||
|
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y z : T⦄ (H1 : R x y)
|
||||||
|
(H2 : R y z) : R x z
|
||||||
|
:= class_rec (λu, u) C x y z H1 H2
|
||||||
|
|
||||||
|
end -- is_transitive
|
||||||
|
|
||||||
|
|
||||||
|
-- Congruence for unary and binary functions
|
||||||
|
-- -----------------------------------------
|
||||||
|
|
||||||
|
namespace congr
|
||||||
|
|
||||||
|
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||||
|
(f : T1 → T2) : Prop :=
|
||||||
|
| mk : (∀x y, R1 x y → R2 (f x) (f y)) → class R1 R2 f
|
||||||
|
|
||||||
|
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||||
|
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||||
|
class_rec (λu, u) C x y
|
||||||
|
|
||||||
|
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||||
|
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
||||||
|
class_rec (λu, u) C x y
|
||||||
|
|
||||||
|
-- for binary functions
|
||||||
|
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||||
|
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
|
||||||
|
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
|
||||||
|
class2 R1 R2 R3 f
|
||||||
|
|
||||||
|
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||||
|
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
|
||||||
|
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
||||||
|
class2_rec (λu, u) C x1 y1 x2 y2
|
||||||
|
|
||||||
|
-- ### general tools to build instances
|
||||||
|
|
||||||
|
theorem compose
|
||||||
|
{T2 : Type} {R2 : T2 → T2 → Prop}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||||
|
{g : T2 → T3} (C2 : congr.class R2 R3 g)
|
||||||
|
{{T1 : Type}} {R1 : T1 → T1 → Prop}
|
||||||
|
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
|
||||||
|
congr.class R1 R3 (λx, g (f x)) :=
|
||||||
|
mk (λx1 x2 H, app C2 (app C1 H))
|
||||||
|
|
||||||
|
theorem compose21
|
||||||
|
{T2 : Type} {R2 : T2 → T2 → Prop}
|
||||||
|
{T3 : Type} {R3 : T3 → T3 → Prop}
|
||||||
|
{T4 : Type} {R4 : T4 → T4 → Prop}
|
||||||
|
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
|
||||||
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
|
||||||
|
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
|
||||||
|
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
|
||||||
|
congr.class R1 R4 (λx, g (f1 x) (f2 x)) :=
|
||||||
|
mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
||||||
|
|
||||||
|
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
|
||||||
|
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||||
|
class R1 R2 (λu : T1, c) :=
|
||||||
|
mk (λx y H1, H c)
|
||||||
|
|
||||||
|
end -- namespace congr
|
||||||
|
|
||||||
|
end -- namespace relation
|
||||||
|
|
||||||
|
|
||||||
|
-- TODO: notice these can't be in the congr namespace, if we want it visible without
|
||||||
|
-- using congr.
|
||||||
|
|
||||||
|
theorem congr_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop)
|
||||||
|
{C : relation.is_reflexive.class R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
||||||
|
relation.congr.class R1 R2 (λu : T1, c) :=
|
||||||
|
relation.congr.const R2 (relation.is_reflexive.app C) R1 c
|
||||||
|
|
||||||
|
theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) :
|
||||||
|
relation.congr.class R R (λu, u) :=
|
||||||
|
relation.congr.mk (λx y H, H)
|
||||||
|
|
||||||
|
|
||||||
|
-- Relations that can be coerced to functions / implications
|
||||||
|
-- ---------------------------------------------------------
|
||||||
|
|
||||||
|
namespace relation
|
||||||
|
|
||||||
|
namespace mp_like
|
||||||
|
|
||||||
|
inductive class {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
|
||||||
|
| mk {} : (a → b) → @class R a b H
|
||||||
|
|
||||||
|
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
|
||||||
|
(C : class H) : a → b := class_rec (λx, x) C
|
||||||
|
|
||||||
|
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
|
||||||
|
{C : class H} : a → b := class_rec (λx, x) C
|
||||||
|
|
||||||
|
end -- namespace mp_like
|
||||||
|
|
||||||
|
|
||||||
|
-- Notation for operations on general symbols
|
||||||
|
-- ------------------------------------------
|
||||||
|
|
||||||
|
namespace operations
|
||||||
|
|
||||||
|
definition refl := is_reflexive.infer
|
||||||
|
definition symm := is_symmetric.infer
|
||||||
|
definition trans := is_transitive.infer
|
||||||
|
definition mp := mp_like.infer
|
||||||
|
|
||||||
|
end -- namespace operations
|
||||||
|
|
||||||
|
namespace symbols
|
||||||
|
|
||||||
|
postfix `⁻¹`:100 := operations.symm
|
||||||
|
infixr `⬝`:75 := operations.trans
|
||||||
|
|
||||||
|
end -- namespace symbols
|
||||||
|
|
||||||
|
end -- namespace relation
|
|
@ -3,6 +3,8 @@ struc
|
||||||
|
|
||||||
Axiomatic properties and structures.
|
Axiomatic properties and structures.
|
||||||
|
|
||||||
|
* [function](function.lean)
|
||||||
|
* [relation](relation.lean)
|
||||||
* [binary](binary.lean) : binary operations
|
* [binary](binary.lean) : binary operations
|
||||||
* [equivalence](equivalence.lean) : equivalence relations
|
* [equivalence](equivalence.lean) : equivalence relations
|
||||||
* [wf](wf.lean) : well-founded relations
|
* [wf](wf.lean) : well-founded relations
|
||||||
|
|
Loading…
Reference in a new issue