feat(library/standard): add classes for relations

This commit is contained in:
Jeremy Avigad 2014-08-04 17:07:59 -07:00 committed by Leonardo de Moura
parent 6a6c9f472e
commit 0ea2d287e1
9 changed files with 346 additions and 146 deletions

View file

@ -15,7 +15,6 @@ import logic
-- import if -- for find
using nat
using congr
using eq_proofs
namespace list

View file

@ -4,7 +4,7 @@
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic.connectives.eq logic.connectives.function
import logic.connectives.eq struc.function
using function
-- Function extensionality

View file

@ -1,140 +0,0 @@
----------------------------------------------------------------------------------------------------
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad
----------------------------------------------------------------------------------------------------
import logic.connectives.basic logic.connectives.function
using function
namespace congr
-- TODO: move this somewhere else
abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x
-- Congruence classes for unary and binary functions
-- -------------------------------------------------
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) : Prop :=
| mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → class R1 R2 f
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec id C x y
-- to trigger class inference
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec id C x y
-- for binary functions
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
class2 R1 R2 R3 f
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
class2_rec id C x1 y1 x2 y2
-- General tools to build instances
-- --------------------------------
theorem compose
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{g : T2 → T3} (C2 : congr.class R2 R3 g)
{{T1 : Type}} {R1 : T1 → T1 → Prop}
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
congr.class R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H))
theorem compose21
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{T4 : Type} {R4 : T4 → T4 → Prop}
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
congr.class R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H))
theorem trivial [instance] {T : Type} (R : T → T → Prop) : class R R id :=
mk (take x y H, H)
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) :
∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), class R1 R2 (function.const T1 c) :=
take T1 R1 c, mk (take x y H1, H c)
-- instances for logic
-- -------------------
theorem congr_not : congr.class iff iff not :=
congr.mk
(take a b,
assume H : a ↔ b, iff_intro
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
theorem congr_and : congr.class2 iff iff iff and :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_or : congr.class2 iff iff iff or :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_imp : congr.class2 iff iff iff imp :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
theorem congr_iff : congr.class2 iff iff iff iff :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
theorem congr_const_iff [instance] := congr.const iff iff_refl
theorem congr_not_compose [instance] := congr.compose congr_not
theorem congr_and_compose [instance] := congr.compose21 congr_and
theorem congr_or_compose [instance] := congr.compose21 congr_or
theorem congr_implies_compose [instance] := congr.compose21 congr_imp
theorem congr_iff_compose [instance] := congr.compose21 congr_iff
theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : class R iff P}
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (app C H) H1
theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a c → ¬(d → a)) ↔ (b c → ¬(d → b)) :=
congr.infer iff iff _ H1
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a c → ¬(d → a)) : b c → ¬(d → b) :=
subst_iff H1 H2
-- TODO: move these to new file
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or_assoc _ _ _
... ↔ a (c b) : congr.infer iff iff _ (or_comm b c)
... ↔ (a c) b : iff_symm (or_assoc _ _ _)
-- TODO: add or_left_comm, and_right_comm, and_left_comm
end congr

View file

@ -4,9 +4,9 @@ logic.connectives
Logical operations and connectives.
* [prop](prop.lean) : the type Prop
* [function](function.lean) : notation for functions
* [basic](basic.lean) : propositional connectives
* [eq](eq.lean) : equality and disequality
* [cast](cast.lean) : casts and heterogeneous equality
* [quantifiers](quantifiers.lean) : existential and universal quantifiers
* [if](if.lean) : if-then-else
* [instances](instances.lean) : type class instances

View file

@ -0,0 +1,167 @@
----------------------------------------------------------------------------------------------------
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad
----------------------------------------------------------------------------------------------------
import logic.connectives.basic logic.connectives.eq struc.relation
using relation
-- Congruences for logic
-- ---------------------
theorem congr_not : congr.class iff iff not :=
congr.mk
(take a b,
assume H : a ↔ b, iff_intro
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
theorem congr_and : congr.class2 iff iff iff and :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_or : congr.class2 iff iff iff or :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_imp : congr.class2 iff iff iff imp :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
theorem congr_iff : congr.class2 iff iff iff iff :=
congr.mk2
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
-- theorem congr_const_iff [instance] := congr.const iff iff_refl
theorem congr_not_compose [instance] := congr.compose congr_not
theorem congr_and_compose [instance] := congr.compose21 congr_and
theorem congr_or_compose [instance] := congr.compose21 congr_or
theorem congr_implies_compose [instance] := congr.compose21 congr_imp
theorem congr_iff_compose [instance] := congr.compose21 congr_iff
-- Generalized substitution
-- ------------------------
namespace gensubst
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
-- information to infer an mp-like relation.
theorem subst {T : Type} {R : T → T → Prop} {P : T → Prop} {C : congr.class R iff P}
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1
infixr `▸`:75 := subst
end -- gensubst
-- = is an equivalence relation
-- ----------------------------
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive.class (@eq T) :=
relation.is_reflexive.mk (@refl T)
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric.class (@eq T) :=
relation.is_symmetric.mk (@symm T)
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive.class (@eq T) :=
relation.is_transitive.mk (@trans T)
-- iff is an equivalence relation
-- ------------------------------
theorem is_reflexive_iff [instance] : relation.is_reflexive.class iff :=
relation.is_reflexive.mk (@iff_refl)
theorem is_symmetric_iff [instance] : relation.is_symmetric.class iff :=
relation.is_symmetric.mk (@iff_symm)
theorem is_transitive_iff [instance] : relation.is_transitive.class iff :=
relation.is_transitive.mk (@iff_trans)
-- Mp-like for iff
-- ---------------
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like.class H :=
relation.mp_like.mk (iff_elim_left H)
-- Tests
-- -----
namespace logic_instances_tests
section
using relation.operations
theorem test1 (a b : Prop) (H : a ↔ b) (H1 : a) : b := mp H H1
end
section
using gensubst
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a c → ¬(d → a)) : b c → ¬(d → b) :=
subst H1 H2
theorem test3 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a c → ¬(d → a)) : b c → ¬(d → b) :=
H1 ▸ H2
end
theorem test4 (a b c d e : Prop) (H1 : a ↔ b) : (a c → ¬(d → a)) ↔ (b c → ¬(d → b)) :=
congr.infer iff iff (λa, (a c → ¬(d → a))) H1
section
using relation.symbols
theorem test5 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
H1 ⬝ H2⁻¹ ⬝ H3
theorem test6 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d :=
H1 ⬝ (H2⁻¹ ⬝ H3)
end
end
-- Boolean calculations
-- --------------------
-- TODO: move these to new file
-- TODO: declare trans
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or_assoc _ _ _
... ↔ a (c b) : congr.infer iff iff _ (or_comm b c)
... ↔ (a c) b : iff_symm (or_assoc _ _ _)
-- TODO: add or_left_comm, and_right_comm, and_left_comm

View file

@ -5,5 +5,5 @@
----------------------------------------------------------------------------------------------------
import logic.connectives.basic logic.connectives.eq logic.connectives.quantifiers
import logic.classes.decidable logic.classes.inhabited logic.classes.congr
import logic.classes.decidable logic.classes.inhabited logic.connectives.instances
import logic.connectives.if

View file

@ -0,0 +1,172 @@
----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad
----------------------------------------------------------------------------------------------------
import logic.connectives.prop
-- General properties of relations
-- -------------------------------
namespace relation
abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀x y, R x y → R y x
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀x y z, R x y → R y z → R x z
namespace is_reflexive
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : reflexive R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) : reflexive R
:= class_rec (λu, u) C
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} : reflexive R
:= class_rec (λu, u) C
end -- is_reflexive
namespace is_symmetric
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : symmetric R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y : T⦄ (H : R x y) : R y x
:= class_rec (λu, u) C x y H
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y : T⦄ (H : R x y) : R y x
:= class_rec (λu, u) C x y H
end -- is_symmetric
namespace is_transitive
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : transitive R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y z : T⦄ (H1 : R x y)
(H2 : R y z) : R x z
:= class_rec (λu, u) C x y z H1 H2
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y z : T⦄ (H1 : R x y)
(H2 : R y z) : R x z
:= class_rec (λu, u) C x y z H1 H2
end -- is_transitive
-- Congruence for unary and binary functions
-- -----------------------------------------
namespace congr
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) : Prop :=
| mk : (∀x y, R1 x y → R2 (f x) (f y)) → class R1 R2 f
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec (λu, u) C x y
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec (λu, u) C x y
-- for binary functions
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
class2 R1 R2 R3 f
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
class2_rec (λu, u) C x1 y1 x2 y2
-- ### general tools to build instances
theorem compose
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{g : T2 → T3} (C2 : congr.class R2 R3 g)
{{T1 : Type}} {R1 : T1 → T1 → Prop}
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
congr.class R1 R3 (λx, g (f x)) :=
mk (λx1 x2 H, app C2 (app C1 H))
theorem compose21
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{T4 : Type} {R4 : T4 → T4 → Prop}
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
congr.class R1 R4 (λx, g (f1 x) (f2 x)) :=
mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
class R1 R2 (λu : T1, c) :=
mk (λx y H1, H c)
end -- namespace congr
end -- namespace relation
-- TODO: notice these can't be in the congr namespace, if we want it visible without
-- using congr.
theorem congr_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop)
{C : relation.is_reflexive.class R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
relation.congr.class R1 R2 (λu : T1, c) :=
relation.congr.const R2 (relation.is_reflexive.app C) R1 c
theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) :
relation.congr.class R R (λu, u) :=
relation.congr.mk (λx y H, H)
-- Relations that can be coerced to functions / implications
-- ---------------------------------------------------------
namespace relation
namespace mp_like
inductive class {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
| mk {} : (a → b) → @class R a b H
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
(C : class H) : a → b := class_rec (λx, x) C
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
{C : class H} : a → b := class_rec (λx, x) C
end -- namespace mp_like
-- Notation for operations on general symbols
-- ------------------------------------------
namespace operations
definition refl := is_reflexive.infer
definition symm := is_symmetric.infer
definition trans := is_transitive.infer
definition mp := mp_like.infer
end -- namespace operations
namespace symbols
postfix `⁻¹`:100 := operations.symm
infixr `⬝`:75 := operations.trans
end -- namespace symbols
end -- namespace relation

View file

@ -3,6 +3,8 @@ struc
Axiomatic properties and structures.
* [function](function.lean)
* [relation](relation.lean)
* [binary](binary.lean) : binary operations
* [equivalence](equivalence.lean) : equivalence relations
* [wf](wf.lean) : well-founded relations