feat(two_quotient): finish proof of elim_incl2
This commit is contained in:
parent
00262e4e47
commit
0ec525a8ee
12 changed files with 115 additions and 41 deletions
|
@ -33,7 +33,7 @@ section
|
||||||
|
|
||||||
variables ⦃a a' : A⦄ {s : R a a'} {r : T a a}
|
variables ⦃a a' : A⦄ {s : R a a'} {r : T a a}
|
||||||
parameter {R}
|
parameter {R}
|
||||||
protected definition e_closure.elim [unfold 6] {B : Type} {f : A → B}
|
protected definition e_closure.elim [unfold 8] {B : Type} {f : A → B}
|
||||||
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' :=
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' :=
|
||||||
begin
|
begin
|
||||||
induction t,
|
induction t,
|
||||||
|
|
|
@ -76,16 +76,13 @@ namespace torus
|
||||||
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop2 = Pl2 :=
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1) : ap (torus.elim Pb Pl1 Pl2 Ps) loop2 = Pl2 :=
|
||||||
!elim_incl1
|
!elim_incl1
|
||||||
|
|
||||||
/-
|
|
||||||
TODO(Leo): uncomment after we finish elim_incl2
|
|
||||||
definition elim_surf {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
definition elim_surf {P : Type} (Pb : P) (Pl1 : Pb = Pb) (Pl2 : Pb = Pb)
|
||||||
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1)
|
(Ps : Pl1 ⬝ Pl2 = Pl2 ⬝ Pl1)
|
||||||
: square (ap02 (torus.elim Pb Pl1 Pl2 Ps) surf)
|
: square (ap02 (torus.elim Pb Pl1 Pl2 Ps) surf)
|
||||||
Ps
|
Ps
|
||||||
(!ap_con ⬝ (!elim_loop1 ◾ !elim_loop2))
|
(!ap_con ⬝ (!elim_loop1 ◾ !elim_loop2))
|
||||||
(!ap_con ⬝ (!elim_loop2 ◾ !elim_loop1)) :=
|
(!ap_con ⬝ (!elim_loop2 ◾ !elim_loop1)) :=
|
||||||
!elim_incl2
|
!elim_incl2
|
||||||
-/
|
|
||||||
|
|
||||||
end torus
|
end torus
|
||||||
|
|
||||||
|
|
|
@ -296,21 +296,29 @@ namespace two_quotient
|
||||||
⦃a a' : A⦄ (t : T a a') : ap (elim P0 P1 P2) (inclt t) = e_closure.elim P1 t :=
|
⦃a a' : A⦄ (t : T a a') : ap (elim P0 P1 P2) (inclt t) = e_closure.elim P1 t :=
|
||||||
!elim_inclt --ap_e_closure_elim_h incl1 (elim_incl1 P2) t
|
!elim_inclt --ap_e_closure_elim_h incl1 (elim_incl1 P2) t
|
||||||
|
|
||||||
/-
|
|
||||||
--print elim
|
|
||||||
theorem elim_incl2 {P : Type} (P0 : A → P)
|
theorem elim_incl2 {P : Type} (P0 : A → P)
|
||||||
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a')
|
(P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a')
|
||||||
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t')
|
(P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t')
|
||||||
⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t')
|
⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t')
|
||||||
: square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') :=
|
: square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') :=
|
||||||
begin
|
begin
|
||||||
-- let H := elim_incl2 R Q2 P0 P1 (two_quotient_Q.rec (λ (a a' : A) (t t' : T a a') (q : Q t t'), con_inv_eq_idp (P2 q))) (Qmk R q),
|
|
||||||
-- esimp at H,
|
|
||||||
rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp],
|
rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp],
|
||||||
xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q)),▸*],
|
xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))],
|
||||||
exact sorry
|
-- esimp, --doesn't fold elim_inclt back. The following tactic is just a "custom esimp"
|
||||||
|
xrewrite [{simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2)
|
||||||
|
(t ⬝r t'⁻¹ʳ)}
|
||||||
|
idpath (ap_con (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2))
|
||||||
|
(inclt t) (inclt t')⁻¹ ⬝
|
||||||
|
(simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t ◾
|
||||||
|
(ap_inv (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2))
|
||||||
|
(inclt t') ⬝
|
||||||
|
inverse2 (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t')))),▸*],
|
||||||
|
rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _),
|
||||||
|
con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹,
|
||||||
|
con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2],
|
||||||
|
xrewrite [to_left_inv !eq_equiv_con_inv_eq_idp (P2 q)],
|
||||||
|
apply top_deg_square
|
||||||
end
|
end
|
||||||
-/
|
|
||||||
|
|
||||||
end
|
end
|
||||||
end two_quotient
|
end two_quotient
|
||||||
|
|
|
@ -167,14 +167,14 @@ namespace is_equiv
|
||||||
-- once pulled back along an equivalence f : A → B, then it has a section
|
-- once pulled back along an equivalence f : A → B, then it has a section
|
||||||
-- over all of B.
|
-- over all of B.
|
||||||
|
|
||||||
definition equiv_rect (P : B → Type) :
|
definition is_equiv_rect (P : B → Type) :
|
||||||
(Πx, P (f x)) → (Πy, P y) :=
|
(Πx, P (f x)) → (Πy, P y) :=
|
||||||
(λg y, eq.transport _ (right_inv f y) (g (f⁻¹ y)))
|
(λg y, eq.transport _ (right_inv f y) (g (f⁻¹ y)))
|
||||||
|
|
||||||
definition equiv_rect_comp (P : B → Type)
|
definition is_equiv_rect_comp (P : B → Type)
|
||||||
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
|
(df : Π (x : A), P (f x)) (x : A) : is_equiv_rect f P df (f x) = df x :=
|
||||||
calc
|
calc
|
||||||
equiv_rect f P df (f x)
|
is_equiv_rect f P df (f x)
|
||||||
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||||||
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||||||
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -transport_compose
|
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -transport_compose
|
||||||
|
@ -285,6 +285,20 @@ namespace equiv
|
||||||
|
|
||||||
definition equiv_lift (A : Type) : A ≃ lift A := equiv.mk up _
|
definition equiv_lift (A : Type) : A ≃ lift A := equiv.mk up _
|
||||||
|
|
||||||
|
definition equiv_rect (f : A ≃ B) (P : B → Type) :
|
||||||
|
(Πx, P (f x)) → (Πy, P y) :=
|
||||||
|
(λg y, eq.transport _ (right_inv f y) (g (f⁻¹ y)))
|
||||||
|
|
||||||
|
definition equiv_rect_comp (f : A ≃ B) (P : B → Type)
|
||||||
|
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
|
||||||
|
calc
|
||||||
|
equiv_rect f P df (f x)
|
||||||
|
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||||||
|
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||||||
|
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -transport_compose
|
||||||
|
... = df x : by rewrite (apd df (left_inv f x))
|
||||||
|
|
||||||
|
|
||||||
namespace ops
|
namespace ops
|
||||||
postfix `⁻¹` := equiv.symm -- overloaded notation for inverse
|
postfix `⁻¹` := equiv.symm -- overloaded notation for inverse
|
||||||
end ops
|
end ops
|
||||||
|
|
|
@ -165,10 +165,10 @@ namespace eq
|
||||||
definition inv_eq_of_idp_eq_con' {p : x = y} {q : y = x} : idp = p ⬝ q → p⁻¹ = q :=
|
definition inv_eq_of_idp_eq_con' {p : x = y} {q : y = x} : idp = p ⬝ q → p⁻¹ = q :=
|
||||||
eq.rec_on p (take q h, h ⬝ !idp_con) q
|
eq.rec_on p (take q h, h ⬝ !idp_con) q
|
||||||
|
|
||||||
definition con_inv_eq_idp {p q : x = y} (r : p = q) : p ⬝ q⁻¹ = idp :=
|
definition con_inv_eq_idp [unfold 6] {p q : x = y} (r : p = q) : p ⬝ q⁻¹ = idp :=
|
||||||
by cases r;apply con.right_inv
|
by cases r;apply con.right_inv
|
||||||
|
|
||||||
definition inv_con_eq_idp {p q : x = y} (r : p = q) : q⁻¹ ⬝ p = idp :=
|
definition inv_con_eq_idp [unfold 6] {p q : x = y} (r : p = q) : q⁻¹ ⬝ p = idp :=
|
||||||
by cases r;apply con.left_inv
|
by cases r;apply con.left_inv
|
||||||
|
|
||||||
definition con_eq_idp {p : x = y} {q : y = x} (r : p = q⁻¹) : p ⬝ q = idp :=
|
definition con_eq_idp {p : x = y} {q : y = x} (r : p = q⁻¹) : p ⬝ q = idp :=
|
||||||
|
@ -544,7 +544,7 @@ namespace eq
|
||||||
/- The 2-dimensional groupoid structure -/
|
/- The 2-dimensional groupoid structure -/
|
||||||
|
|
||||||
-- Horizontal composition of 2-dimensional paths.
|
-- Horizontal composition of 2-dimensional paths.
|
||||||
definition concat2 {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q')
|
definition concat2 [unfold 9 10] {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q')
|
||||||
: p ⬝ q = p' ⬝ q' :=
|
: p ⬝ q = p' ⬝ q' :=
|
||||||
eq.rec_on h (eq.rec_on h' idp)
|
eq.rec_on h (eq.rec_on h' idp)
|
||||||
|
|
||||||
|
|
|
@ -62,7 +62,7 @@ namespace eq
|
||||||
by cases p;exact idpo
|
by cases p;exact idpo
|
||||||
|
|
||||||
definition tr_pathover [unfold 5] (p : a = a₂) (b : B a₂) : p⁻¹ ▸ b =[p] b :=
|
definition tr_pathover [unfold 5] (p : a = a₂) (b : B a₂) : p⁻¹ ▸ b =[p] b :=
|
||||||
pathover_of_eq_tr idp
|
by cases p;exact idpo
|
||||||
|
|
||||||
definition concato [unfold 12] (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) : b =[p ⬝ p₂] b₃ :=
|
definition concato [unfold 12] (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) : b =[p ⬝ p₂] b₃ :=
|
||||||
pathover.rec_on r₂ r
|
pathover.rec_on r₂ r
|
||||||
|
@ -237,7 +237,7 @@ namespace eq
|
||||||
: eq_concato q⁻¹ (pathover_idp_of_eq q) = (idpo : b' =[refl a] b') :=
|
: eq_concato q⁻¹ (pathover_idp_of_eq q) = (idpo : b' =[refl a] b') :=
|
||||||
by induction q;constructor
|
by induction q;constructor
|
||||||
|
|
||||||
definition change_path (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
|
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
|
||||||
by induction q;exact r
|
by induction q;exact r
|
||||||
|
|
||||||
definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ :=
|
definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ :=
|
||||||
|
|
|
@ -47,7 +47,7 @@ namespace eq
|
||||||
|
|
||||||
definition eq_of_cube (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
definition eq_of_cube (c : cube s₁₁₀ s₁₁₂ s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁) :
|
||||||
transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ =
|
transpose s₁₀₁⁻¹ᵛ ⬝h s₁₁₀ ⬝h transpose s₁₂₁ =
|
||||||
whisker_square (eq_bottom_of_square s₀₁₁) (eq_bottom_of_square s₂₁₁) idp idp s₁₁₂ :=
|
whisker_square (eq_bot_of_square s₀₁₁) (eq_bot_of_square s₂₁₁) idp idp s₁₁₂ :=
|
||||||
by induction c; reflexivity
|
by induction c; reflexivity
|
||||||
|
|
||||||
--set_option pp.implicit true
|
--set_option pp.implicit true
|
||||||
|
|
|
@ -134,7 +134,7 @@ namespace eq
|
||||||
definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
|
definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
|
||||||
by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids
|
by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids
|
||||||
|
|
||||||
definition eq_bottom_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
|
definition eq_bot_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
|
||||||
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
|
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
|
||||||
by induction s₁₁; apply idp
|
by induction s₁₁; apply idp
|
||||||
|
|
||||||
|
@ -165,6 +165,10 @@ namespace eq
|
||||||
: square (l ⬝ b ⬝ r⁻¹) b l r :=
|
: square (l ⬝ b ⬝ r⁻¹) b l r :=
|
||||||
by induction r;induction b;induction l;constructor
|
by induction r;induction b;induction l;constructor
|
||||||
|
|
||||||
|
definition bot_deg_square (l : a₁ = a₂) (t : a₁ = a₃) (r : a₃ = a₄)
|
||||||
|
: square t (l⁻¹ ⬝ t ⬝ r) l r :=
|
||||||
|
by induction r;induction t;induction l;constructor
|
||||||
|
|
||||||
/-
|
/-
|
||||||
the following two equivalences have as underlying inverse function the functions
|
the following two equivalences have as underlying inverse function the functions
|
||||||
hdeg_square and vdeg_square, respectively.
|
hdeg_square and vdeg_square, respectively.
|
||||||
|
|
|
@ -60,8 +60,8 @@ namespace eq
|
||||||
: squareover B vrfl q₁₀ q₁₀' idpo idpo :=
|
: squareover B vrfl q₁₀ q₁₀' idpo idpo :=
|
||||||
by induction r;exact vrflo
|
by induction r;exact vrflo
|
||||||
|
|
||||||
definition hdeg_squareover {q₁₀' : b₀₀ =[p₁₀] b₂₀} (r : q₁₀ = q₁₀')
|
definition hdeg_squareover {q₀₁' : b₀₀ =[p₀₁] b₀₂} (r : q₀₁ = q₀₁')
|
||||||
: squareover B hrfl idpo idpo q₁₀ q₁₀' :=
|
: squareover B hrfl idpo idpo q₀₁ q₀₁' :=
|
||||||
by induction r; exact hrflo
|
by induction r; exact hrflo
|
||||||
|
|
||||||
-- relating squareovers to squares
|
-- relating squareovers to squares
|
||||||
|
@ -120,6 +120,22 @@ namespace eq
|
||||||
: squareover B (square_of_eq_top s) q₁₀ q₁₂ q₀₁ q₂₁ :=
|
: squareover B (square_of_eq_top s) q₁₀ q₁₂ q₀₁ q₂₁ :=
|
||||||
by induction q₂₁; induction q₁₂; esimp at r;induction r;induction q₁₀;constructor
|
by induction q₂₁; induction q₁₂; esimp at r;induction r;induction q₁₀;constructor
|
||||||
|
|
||||||
|
definition squareover_of_eq_top (r : change_path (eq_top_of_square s₁₁) q₁₀ = q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ)
|
||||||
|
: squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ :=
|
||||||
|
begin
|
||||||
|
induction s₁₁, revert q₁₂ q₁₀ r,
|
||||||
|
eapply idp_rec_on q₂₁, clear q₂₁,
|
||||||
|
intro q₁₂,
|
||||||
|
eapply idp_rec_on q₁₂, clear q₁₂,
|
||||||
|
esimp, intros,
|
||||||
|
induction r, eapply idp_rec_on q₁₀,
|
||||||
|
constructor
|
||||||
|
end
|
||||||
|
|
||||||
|
definition eq_top_of_squareover (r : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁)
|
||||||
|
: change_path (eq_top_of_square s₁₁) q₁₀ = q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ :=
|
||||||
|
by induction r; reflexivity
|
||||||
|
|
||||||
/-
|
/-
|
||||||
definition squareover_equiv_pathover (q₁₀ : b₀₀ =[p₁₀] b₂₀) (q₁₂ : b₀₂ =[p₁₂] b₂₂)
|
definition squareover_equiv_pathover (q₁₀ : b₀₀ =[p₁₀] b₂₀) (q₁₂ : b₀₂ =[p₁₂] b₂₂)
|
||||||
(q₀₁ : b₀₀ =[p₀₁] b₀₂) (q₂₁ : b₂₀ =[p₂₁] b₂₂)
|
(q₀₁ : b₀₀ =[p₀₁] b₀₂) (q₂₁ : b₂₀ =[p₂₁] b₂₂)
|
||||||
|
@ -156,6 +172,8 @@ namespace eq
|
||||||
(s : squareover B (natural_square_tr q p) r r₂
|
(s : squareover B (natural_square_tr q p) r r₂
|
||||||
(pathover_ap B f (apdo b p)) (pathover_ap B g (apdo b₂ p)))
|
(pathover_ap B f (apdo b p)) (pathover_ap B g (apdo b₂ p)))
|
||||||
: pathover (λa, pathover B (b a) (q a) (b₂ a)) r p r₂ :=
|
: pathover (λa, pathover B (b a) (q a) (b₂ a)) r p r₂ :=
|
||||||
by induction p;esimp at s; apply pathover_idp_of_eq; apply eq_of_vdeg_squareover; exact s
|
begin
|
||||||
|
induction p, esimp at s, apply pathover_idp_of_eq, apply eq_of_vdeg_squareover, exact s
|
||||||
|
end
|
||||||
|
|
||||||
end eq
|
end eq
|
||||||
|
|
|
@ -252,7 +252,7 @@ namespace eq
|
||||||
definition eq_equiv_eq_closed [constructor] (p : a₁ = a₂) (q : a₃ = a₄) : (a₁ = a₃) ≃ (a₂ = a₄) :=
|
definition eq_equiv_eq_closed [constructor] (p : a₁ = a₂) (q : a₃ = a₄) : (a₁ = a₃) ≃ (a₂ = a₄) :=
|
||||||
equiv.trans (equiv_eq_closed_left a₃ p) (equiv_eq_closed_right a₂ q)
|
equiv.trans (equiv_eq_closed_left a₃ p) (equiv_eq_closed_right a₂ q)
|
||||||
|
|
||||||
definition is_equiv_whisker_left (p : a₁ = a₂) (q r : a₂ = a₃)
|
definition is_equiv_whisker_left [constructor] (p : a₁ = a₂) (q r : a₂ = a₃)
|
||||||
: is_equiv (whisker_left p : q = r → p ⬝ q = p ⬝ r) :=
|
: is_equiv (whisker_left p : q = r → p ⬝ q = p ⬝ r) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -269,10 +269,11 @@ namespace eq
|
||||||
{intro s, induction s, induction q, induction p, reflexivity}
|
{intro s, induction s, induction q, induction p, reflexivity}
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_equiv_con_eq_con_left (p : a₁ = a₂) (q r : a₂ = a₃) : (q = r) ≃ (p ⬝ q = p ⬝ r) :=
|
definition eq_equiv_con_eq_con_left [constructor] (p : a₁ = a₂) (q r : a₂ = a₃)
|
||||||
|
: (q = r) ≃ (p ⬝ q = p ⬝ r) :=
|
||||||
equiv.mk _ !is_equiv_whisker_left
|
equiv.mk _ !is_equiv_whisker_left
|
||||||
|
|
||||||
definition is_equiv_whisker_right {p q : a₁ = a₂} (r : a₂ = a₃)
|
definition is_equiv_whisker_right [constructor] {p q : a₁ = a₂} (r : a₂ = a₃)
|
||||||
: is_equiv (λs, whisker_right s r : p = q → p ⬝ r = q ⬝ r) :=
|
: is_equiv (λs, whisker_right s r : p = q → p ⬝ r = q ⬝ r) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -281,7 +282,8 @@ namespace eq
|
||||||
{intro s, induction s, induction r, induction p, reflexivity}
|
{intro s, induction s, induction r, induction p, reflexivity}
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_equiv_con_eq_con_right (p q : a₁ = a₂) (r : a₂ = a₃) : (p = q) ≃ (p ⬝ r = q ⬝ r) :=
|
definition eq_equiv_con_eq_con_right [constructor] (p q : a₁ = a₂) (r : a₂ = a₃)
|
||||||
|
: (p = q) ≃ (p ⬝ r = q ⬝ r) :=
|
||||||
equiv.mk _ !is_equiv_whisker_right
|
equiv.mk _ !is_equiv_whisker_right
|
||||||
|
|
||||||
/-
|
/-
|
||||||
|
@ -289,7 +291,7 @@ namespace eq
|
||||||
However, these proofs have the advantage that the inverse is definitionally equal to
|
However, these proofs have the advantage that the inverse is definitionally equal to
|
||||||
what we would expect
|
what we would expect
|
||||||
-/
|
-/
|
||||||
definition is_equiv_con_eq_of_eq_inv_con (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
definition is_equiv_con_eq_of_eq_inv_con [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
||||||
: is_equiv (con_eq_of_eq_inv_con : p = r⁻¹ ⬝ q → r ⬝ p = q) :=
|
: is_equiv (con_eq_of_eq_inv_con : p = r⁻¹ ⬝ q → r ⬝ p = q) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -300,11 +302,11 @@ namespace eq
|
||||||
con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] },
|
con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] },
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_inv_con_equiv_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
definition eq_inv_con_equiv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
||||||
: (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = q) :=
|
: (p = r⁻¹ ⬝ q) ≃ (r ⬝ p = q) :=
|
||||||
equiv.mk _ !is_equiv_con_eq_of_eq_inv_con
|
equiv.mk _ !is_equiv_con_eq_of_eq_inv_con
|
||||||
|
|
||||||
definition is_equiv_con_eq_of_eq_con_inv (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
definition is_equiv_con_eq_of_eq_con_inv [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
||||||
: is_equiv (con_eq_of_eq_con_inv : r = q ⬝ p⁻¹ → r ⬝ p = q) :=
|
: is_equiv (con_eq_of_eq_con_inv : r = q ⬝ p⁻¹ → r ⬝ p = q) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -313,11 +315,11 @@ namespace eq
|
||||||
{ intro s, induction p, rewrite [↑[con_eq_of_eq_con_inv,eq_con_inv_of_con_eq]] },
|
{ intro s, induction p, rewrite [↑[con_eq_of_eq_con_inv,eq_con_inv_of_con_eq]] },
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_con_inv_equiv_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
definition eq_con_inv_equiv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₂ = a₁)
|
||||||
: (r = q ⬝ p⁻¹) ≃ (r ⬝ p = q) :=
|
: (r = q ⬝ p⁻¹) ≃ (r ⬝ p = q) :=
|
||||||
equiv.mk _ !is_equiv_con_eq_of_eq_con_inv
|
equiv.mk _ !is_equiv_con_eq_of_eq_con_inv
|
||||||
|
|
||||||
definition is_equiv_inv_con_eq_of_eq_con (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂)
|
definition is_equiv_inv_con_eq_of_eq_con [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂)
|
||||||
: is_equiv (inv_con_eq_of_eq_con : p = r ⬝ q → r⁻¹ ⬝ p = q) :=
|
: is_equiv (inv_con_eq_of_eq_con : p = r ⬝ q → r⁻¹ ⬝ p = q) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -328,11 +330,11 @@ namespace eq
|
||||||
con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] },
|
con.assoc,con.assoc,con.right_inv,▸*,-con.assoc,con.left_inv,▸* at *,idp_con s] },
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_con_equiv_inv_con_eq (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂)
|
definition eq_con_equiv_inv_con_eq [constructor] (p : a₁ = a₃) (q : a₂ = a₃) (r : a₁ = a₂)
|
||||||
: (p = r ⬝ q) ≃ (r⁻¹ ⬝ p = q) :=
|
: (p = r ⬝ q) ≃ (r⁻¹ ⬝ p = q) :=
|
||||||
equiv.mk _ !is_equiv_inv_con_eq_of_eq_con
|
equiv.mk _ !is_equiv_inv_con_eq_of_eq_con
|
||||||
|
|
||||||
definition is_equiv_con_inv_eq_of_eq_con (p : a₃ = a₁) (q : a₂ = a₃) (r : a₂ = a₁)
|
definition is_equiv_con_inv_eq_of_eq_con [constructor] (p : a₃ = a₁) (q : a₂ = a₃) (r : a₂ = a₁)
|
||||||
: is_equiv (con_inv_eq_of_eq_con : r = q ⬝ p → r ⬝ p⁻¹ = q) :=
|
: is_equiv (con_inv_eq_of_eq_con : r = q ⬝ p → r ⬝ p⁻¹ = q) :=
|
||||||
begin
|
begin
|
||||||
fapply adjointify,
|
fapply adjointify,
|
||||||
|
@ -366,6 +368,32 @@ namespace eq
|
||||||
: is_equiv (eq_inv_con_of_con_eq : r ⬝ p = q → p = r⁻¹ ⬝ q) :=
|
: is_equiv (eq_inv_con_of_con_eq : r ⬝ p = q → p = r⁻¹ ⬝ q) :=
|
||||||
is_equiv_inv con_eq_of_eq_inv_con
|
is_equiv_inv con_eq_of_eq_inv_con
|
||||||
|
|
||||||
|
definition is_equiv_con_inv_eq_idp [constructor] (p q : a₁ = a₂)
|
||||||
|
: is_equiv (con_inv_eq_idp : p = q → p ⬝ q⁻¹ = idp) :=
|
||||||
|
begin
|
||||||
|
fapply adjointify,
|
||||||
|
{ apply eq_of_con_inv_eq_idp},
|
||||||
|
{ intro s, induction q, esimp at *, cases s, reflexivity},
|
||||||
|
{ intro s, induction s, induction p, reflexivity},
|
||||||
|
end
|
||||||
|
|
||||||
|
definition is_equiv_inv_con_eq_idp [constructor] (p q : a₁ = a₂)
|
||||||
|
: is_equiv (inv_con_eq_idp : p = q → q⁻¹ ⬝ p = idp) :=
|
||||||
|
begin
|
||||||
|
fapply adjointify,
|
||||||
|
{ apply eq_of_inv_con_eq_idp},
|
||||||
|
{ intro s, induction q, esimp [eq_of_inv_con_eq_idp] at *,
|
||||||
|
eapply is_equiv_rect (eq_equiv_con_eq_con_left idp p idp), clear s,
|
||||||
|
intro s, cases s, reflexivity},
|
||||||
|
{ intro s, induction s, induction p, reflexivity},
|
||||||
|
end
|
||||||
|
|
||||||
|
definition eq_equiv_con_inv_eq_idp [constructor] (p q : a₁ = a₂) : (p = q) ≃ (p ⬝ q⁻¹ = idp) :=
|
||||||
|
equiv.mk _ !is_equiv_con_inv_eq_idp
|
||||||
|
|
||||||
|
definition eq_equiv_inv_con_eq_idp [constructor] (p q : a₁ = a₂) : (p = q) ≃ (q⁻¹ ⬝ p = idp) :=
|
||||||
|
equiv.mk _ !is_equiv_inv_con_eq_idp
|
||||||
|
|
||||||
/- Pathover Equivalences -/
|
/- Pathover Equivalences -/
|
||||||
|
|
||||||
definition pathover_eq_equiv_l (p : a₁ = a₂) (q : a₁ = a₃) (r : a₂ = a₃) : q =[p] r ≃ q = p ⬝ r :=
|
definition pathover_eq_equiv_l (p : a₁ = a₂) (q : a₁ = a₃) (r : a₂ = a₃) : q =[p] r ≃ q = p ⬝ r :=
|
||||||
|
|
|
@ -96,6 +96,11 @@ namespace eq
|
||||||
:=
|
:=
|
||||||
by induction q;esimp at *;cases r;reflexivity
|
by induction q;esimp at *;cases r;reflexivity
|
||||||
|
|
||||||
|
theorem eq_of_con_inv_eq_idp_con2 {p p' q q' : a₁ = a₂} (r : p = p') (s : q = q')
|
||||||
|
(t : p' ⬝ q'⁻¹ = idp)
|
||||||
|
: eq_of_con_inv_eq_idp (r ◾ inverse2 s ⬝ t) = r ⬝ eq_of_con_inv_eq_idp t ⬝ s⁻¹ :=
|
||||||
|
by induction s;induction r;induction q;reflexivity
|
||||||
|
|
||||||
-- definition naturality_apdo {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a}
|
-- definition naturality_apdo {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a}
|
||||||
-- (H : f ~ g) (p : a = a₂)
|
-- (H : f ~ g) (p : a = a₂)
|
||||||
-- : squareover B vrfl (apdo f p) (apdo g p)
|
-- : squareover B vrfl (apdo f p) (apdo g p)
|
||||||
|
|
|
@ -159,7 +159,7 @@ namespace pi
|
||||||
: ap (pi_functor f0 f1) (eq_of_homotopy h)
|
: ap (pi_functor f0 f1) (eq_of_homotopy h)
|
||||||
= eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
|
= eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
|
||||||
begin
|
begin
|
||||||
apply (equiv_rect (@apd10 A B g g')), intro p, clear h,
|
apply (is_equiv_rect (@apd10 A B g g')), intro p, clear h,
|
||||||
cases p,
|
cases p,
|
||||||
apply concat,
|
apply concat,
|
||||||
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
|
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
|
||||||
|
|
Loading…
Reference in a new issue