refactor(library/data/int): make int instance of integral domain
This commit is contained in:
parent
da7a403b6c
commit
0f0da64264
3 changed files with 158 additions and 165 deletions
|
@ -47,12 +47,29 @@ theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zer
|
||||||
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A,
|
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A,
|
||||||
zero_ne_one_class A
|
zero_ne_one_class A
|
||||||
|
|
||||||
|
section semiring
|
||||||
|
|
||||||
|
variables [s : semiring A] (a b c : A)
|
||||||
|
include s
|
||||||
|
|
||||||
|
theorem ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
|
||||||
|
assume H1 : a = 0,
|
||||||
|
have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul_eq b,
|
||||||
|
H H2
|
||||||
|
|
||||||
|
theorem ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
|
||||||
|
assume H1 : b = 0,
|
||||||
|
have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero_eq a,
|
||||||
|
H H2
|
||||||
|
|
||||||
|
end semiring
|
||||||
|
|
||||||
|
/- comm semiring -/
|
||||||
|
|
||||||
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
|
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
|
||||||
|
|
||||||
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying c ≠ 0 → c * a = c * b → a = b.
|
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying c ≠ 0 → c * a = c * b → a = b.
|
||||||
|
|
||||||
/- abstract divisibility -/
|
|
||||||
|
|
||||||
section comm_semiring
|
section comm_semiring
|
||||||
|
|
||||||
variables [s : comm_semiring A] (a b c : A)
|
variables [s : comm_semiring A] (a b c : A)
|
||||||
|
@ -69,7 +86,6 @@ section comm_semiring
|
||||||
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
|
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
|
||||||
exists.elim H₁ H₂
|
exists.elim H₁ H₂
|
||||||
|
|
||||||
|
|
||||||
theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
|
theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
|
||||||
|
|
||||||
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
|
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
|
||||||
|
@ -298,7 +314,7 @@ section
|
||||||
variables [s : integral_domain A] (a b c d e : A)
|
variables [s : integral_domain A] (a b c d e : A)
|
||||||
include s
|
include s
|
||||||
|
|
||||||
theorem mul_ne_zero_of_ne_zero_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
theorem mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||||||
assume H : a * b = 0,
|
assume H : a * b = 0,
|
||||||
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
|
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
|
||||||
|
|
||||||
|
|
|
@ -47,7 +47,7 @@ definition int.of_num [coercion] (n : num) : ℤ := int.of_nat (nat.of_num n)
|
||||||
|
|
||||||
namespace int
|
namespace int
|
||||||
|
|
||||||
/- computational definitions of basic functions -/
|
/- definitions of basic functions -/
|
||||||
|
|
||||||
definition neg_of_nat (m : ℕ) : ℤ :=
|
definition neg_of_nat (m : ℕ) : ℤ :=
|
||||||
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
||||||
|
@ -115,6 +115,12 @@ cases_on a
|
||||||
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
|
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
|
||||||
inr (take H1, H (neg_succ_of_nat_inj H1)))))
|
inr (take H1, H (neg_succ_of_nat_inj H1)))))
|
||||||
|
|
||||||
|
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
|
||||||
|
|
||||||
|
theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
||||||
|
|
||||||
|
theorem mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := rfl
|
||||||
|
|
||||||
theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
||||||
have H1 : n - m = 0, from le_imp_sub_eq_zero H,
|
have H1 : n - m = 0, from le_imp_sub_eq_zero H,
|
||||||
calc
|
calc
|
||||||
|
@ -290,17 +296,28 @@ or.elim (@le_or_gt n m)
|
||||||
... = n - m : succ_pred_of_pos (sub_pos_of_gt H)
|
... = n - m : succ_pred_of_pos (sub_pos_of_gt H)
|
||||||
... = dist m n : dist_le (lt_imp_le H))
|
... = dist m n : dist_le (lt_imp_le H))
|
||||||
|
|
||||||
theorem cases (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
||||||
cases_on a
|
cases_on a
|
||||||
(take n, or.inl (exists.intro n rfl))
|
(take n, or.inl (exists.intro n rfl))
|
||||||
(take n', or.inr (exists.intro (succ n') rfl))
|
(take n', or.inr (exists.intro (succ n') rfl))
|
||||||
|
|
||||||
theorem by_cases {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) :
|
theorem cases_of_nat_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) :=
|
||||||
|
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
|
||||||
|
|
||||||
|
theorem by_cases_of_nat {P : ℤ → Prop} (a : ℤ)
|
||||||
|
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) :
|
||||||
P a :=
|
P a :=
|
||||||
or.elim (cases a)
|
or.elim (cases_of_nat a)
|
||||||
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||||||
(assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
|
(assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
|
||||||
|
|
||||||
|
theorem by_cases_of_nat_succ {P : ℤ → Prop} (a : ℤ)
|
||||||
|
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat (succ n))) :
|
||||||
|
P a :=
|
||||||
|
or.elim (cases_of_nat_succ a)
|
||||||
|
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
||||||
|
(assume H, obtain (n : ℕ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
|
||||||
|
|
||||||
/-
|
/-
|
||||||
Show int is a ring.
|
Show int is a ring.
|
||||||
-/
|
-/
|
||||||
|
@ -417,6 +434,42 @@ have H : repr (-a + a) ≡ repr 0, from
|
||||||
... ≡ repr 0 : padd_pneg,
|
... ≡ repr 0 : padd_pneg,
|
||||||
eq_of_repr_equiv_repr H
|
eq_of_repr_equiv_repr H
|
||||||
|
|
||||||
|
/- nat -/
|
||||||
|
|
||||||
|
definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p)
|
||||||
|
|
||||||
|
theorem pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q :=
|
||||||
|
calc
|
||||||
|
pabs p = nat_abs (abstr p) : nat_abs_abstr
|
||||||
|
... = nat_abs (abstr q) : abstr_eq H
|
||||||
|
... = pabs q : nat_abs_abstr
|
||||||
|
|
||||||
|
theorem nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) :=
|
||||||
|
calc
|
||||||
|
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
|
||||||
|
... = pabs (repr a) : nat_abs_abstr
|
||||||
|
|
||||||
|
theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
||||||
|
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
||||||
|
calc
|
||||||
|
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
||||||
|
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
||||||
|
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
||||||
|
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
||||||
|
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), from !dist_add_le_add_dist,
|
||||||
|
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
||||||
|
|
||||||
|
theorem mul_nat_abs (a b : ℤ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
|
||||||
|
cases_on a
|
||||||
|
(take m,
|
||||||
|
cases_on b
|
||||||
|
(take n, rfl)
|
||||||
|
(take n', !nat_abs_neg ▸ rfl))
|
||||||
|
(take m',
|
||||||
|
cases_on b
|
||||||
|
(take n, !nat_abs_neg ▸ rfl)
|
||||||
|
(take n', rfl))
|
||||||
|
|
||||||
/- multiplication -/
|
/- multiplication -/
|
||||||
|
|
||||||
definition pmul (p q : ℕ × ℕ) : ℕ × ℕ :=
|
definition pmul (p q : ℕ × ℕ) : ℕ × ℕ :=
|
||||||
|
@ -536,18 +589,30 @@ theorem zero_ne_one : (typeof 0 : int) ≠ 1 :=
|
||||||
assume H : 0 = 1,
|
assume H : 0 = 1,
|
||||||
show false, from succ_ne_zero 0 ((of_nat_inj H)⁻¹)
|
show false, from succ_ne_zero 0 ((of_nat_inj H)⁻¹)
|
||||||
|
|
||||||
definition comm_ring : algebra.comm_ring int :=
|
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 :=
|
||||||
algebra.comm_ring.mk add add.assoc zero add.left_id add.right_id neg add.left_inv
|
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
||||||
|
calc
|
||||||
|
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
|
||||||
|
... = (nat_abs 0) : {H}
|
||||||
|
... = nat.zero : nat_abs_of_nat nat.zero,
|
||||||
|
have H3 : (nat_abs a) = nat.zero ∨ (nat_abs b) = nat.zero, from mul.eq_zero H2,
|
||||||
|
or_of_or_of_imp_of_imp H3
|
||||||
|
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
||||||
|
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
||||||
|
|
||||||
|
definition integral_domain : algebra.integral_domain int :=
|
||||||
|
algebra.integral_domain.mk add add.assoc zero add.left_id add.right_id neg add.left_inv
|
||||||
add.comm mul mul.assoc (of_num 1) mul.left_id mul.right_id mul.left_distrib mul.right_distrib
|
add.comm mul mul.assoc (of_num 1) mul.left_id mul.right_id mul.left_distrib mul.right_distrib
|
||||||
zero_ne_one mul.comm
|
zero_ne_one mul.comm @eq_zero_or_eq_zero_of_mul_eq_zero
|
||||||
|
|
||||||
/-
|
/-
|
||||||
Instantiate ring theorems to int
|
Instantiate ring theorems to int
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
-- TODO: make this "section" when scoping bug is fixed
|
||||||
context port_algebra
|
context port_algebra
|
||||||
open algebra -- TODO: can we "open" algebra only for the duration of this section?
|
open algebra
|
||||||
instance comm_ring
|
instance integral_domain
|
||||||
|
|
||||||
theorem mul.left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
theorem mul.left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
||||||
theorem mul.right_comm : ∀a b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
theorem mul.right_comm : ∀a b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
||||||
|
@ -590,10 +655,8 @@ context port_algebra
|
||||||
@algebra.add_eq_iff_eq_neg_add _ _
|
@algebra.add_eq_iff_eq_neg_add _ _
|
||||||
theorem add_eq_iff_eq_add_neg : ∀a b c : ℤ, a + b = c ↔ a = c + -b :=
|
theorem add_eq_iff_eq_add_neg : ∀a b c : ℤ, a + b = c ↔ a = c + -b :=
|
||||||
@algebra.add_eq_iff_eq_add_neg _ _
|
@algebra.add_eq_iff_eq_add_neg _ _
|
||||||
|
|
||||||
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
||||||
infix - := int.sub
|
infix - := int.sub
|
||||||
|
|
||||||
theorem sub_self : ∀a : ℤ, a - a = 0 := algebra.sub_self
|
theorem sub_self : ∀a : ℤ, a - a = 0 := algebra.sub_self
|
||||||
theorem sub_add_cancel : ∀a b : ℤ, a - b + b = a := algebra.sub_add_cancel
|
theorem sub_add_cancel : ∀a b : ℤ, a - b + b = a := algebra.sub_add_cancel
|
||||||
theorem add_sub_cancel : ∀a b : ℤ, a + b - b = a := algebra.add_sub_cancel
|
theorem add_sub_cancel : ∀a b : ℤ, a + b - b = a := algebra.add_sub_cancel
|
||||||
|
@ -617,6 +680,34 @@ context port_algebra
|
||||||
theorem sub_sub_eq : ∀a b c : ℤ, a - b - c = a - (b + c) := algebra.sub_sub_eq
|
theorem sub_sub_eq : ∀a b c : ℤ, a - b - c = a - (b + c) := algebra.sub_sub_eq
|
||||||
theorem add_sub_add_left_eq_sub : ∀a b c : ℤ, (c + a) - (c + b) = a - b :=
|
theorem add_sub_add_left_eq_sub : ∀a b c : ℤ, (c + a) - (c + b) = a - b :=
|
||||||
algebra.add_sub_add_left_eq_sub
|
algebra.add_sub_add_left_eq_sub
|
||||||
|
theorem ne_zero_of_mul_ne_zero_right : ∀{a b : ℤ}, a * b ≠ 0 → a ≠ 0 :=
|
||||||
|
@algebra.ne_zero_of_mul_ne_zero_right _ _
|
||||||
|
theorem ne_zero_of_mul_ne_zero_left : ∀{a b : ℤ}, a * b ≠ 0 → b ≠ 0 :=
|
||||||
|
@algebra.ne_zero_of_mul_ne_zero_left _ _
|
||||||
|
definition dvd (a b : ℤ) : Prop := algebra.dvd a b
|
||||||
|
infix `|` := dvd
|
||||||
|
theorem dvd.intro : ∀{a b c : ℤ} (H : a * b = c), a | c := @algebra.dvd.intro _ _
|
||||||
|
theorem dvd.ex : ∀{a b : ℤ} (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _
|
||||||
|
theorem dvd.elim : ∀{P : Prop} {a b : ℤ} (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P :=
|
||||||
|
@algebra.dvd.elim _ _
|
||||||
|
theorem dvd.refl : ∀a : ℤ, a | a := algebra.dvd.refl
|
||||||
|
theorem dvd.trans : ∀{a b c : ℤ} (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _
|
||||||
|
theorem eq_zero_of_zero_dvd : ∀(a : ℤ) {H : 0 | a}, a = 0 := @algebra.eq_zero_of_zero_dvd _ _
|
||||||
|
theorem dvd_zero : ∀a : ℤ, a | 0 := algebra.dvd_zero
|
||||||
|
theorem one_dvd : ∀a : ℤ, 1 | a := algebra.one_dvd
|
||||||
|
theorem dvd_mul_right : ∀a b : ℤ, a | a * b := algebra.dvd_mul_right
|
||||||
|
theorem dvd_mul_left : ∀a b : ℤ, a | b * a := algebra.dvd_mul_left
|
||||||
|
theorem dvd_mul_of_dvd_left : ∀{a b : ℤ} (H : a | b) (c : ℤ), a | b * c :=
|
||||||
|
@algebra.dvd_mul_of_dvd_left _ _
|
||||||
|
theorem dvd_mul_of_dvd_right : ∀{a b : ℤ} (H : a | b) (c : ℤ), a | c * b :=
|
||||||
|
@algebra.dvd_mul_of_dvd_right _ _
|
||||||
|
theorem mul_dvd_mul : ∀{a b c d : ℤ}, a | b → c | d → a * c | b * d :=
|
||||||
|
@algebra.mul_dvd_mul _ _
|
||||||
|
theorem dvd_of_mul_right_dvd : ∀{a b c : ℤ}, a * b | c → a | c :=
|
||||||
|
@algebra.dvd_of_mul_right_dvd _ _
|
||||||
|
theorem dvd_of_mul_left_dvd : ∀{a b c : ℤ}, a * b | c → b | c :=
|
||||||
|
@algebra.dvd_of_mul_left_dvd _ _
|
||||||
|
theorem dvd_add : ∀{a b c : ℤ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _
|
||||||
theorem zero_mul_eq : ∀a : ℤ, 0 * a = 0 := algebra.zero_mul_eq
|
theorem zero_mul_eq : ∀a : ℤ, 0 * a = 0 := algebra.zero_mul_eq
|
||||||
theorem mul_zero_eq : ∀a : ℤ, a * 0 = 0 := algebra.mul_zero_eq
|
theorem mul_zero_eq : ∀a : ℤ, a * 0 = 0 := algebra.mul_zero_eq
|
||||||
theorem neg_mul_eq_neg_mul : ∀a b : ℤ, -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
|
theorem neg_mul_eq_neg_mul : ∀a b : ℤ, -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
|
||||||
|
@ -634,108 +725,26 @@ context port_algebra
|
||||||
algebra.mul_self_sub_mul_self_eq
|
algebra.mul_self_sub_mul_self_eq
|
||||||
theorem mul_self_sub_one_eq : ∀a : ℤ, a * a - 1 = (a + 1) * (a - 1) :=
|
theorem mul_self_sub_one_eq : ∀a : ℤ, a * a - 1 = (a + 1) * (a - 1) :=
|
||||||
algebra.mul_self_sub_one_eq
|
algebra.mul_self_sub_one_eq
|
||||||
|
theorem dvd_neg_iff_dvd : ∀a b : ℤ, a | -b ↔ a | b := algebra.dvd_neg_iff_dvd
|
||||||
|
theorem neg_dvd_iff_dvd : ∀a b : ℤ, -a | b ↔ a | b := algebra.neg_dvd_iff_dvd
|
||||||
|
theorem dvd_sub : ∀a b c : ℤ, a | b → a | c → a | (b - c) := algebra.dvd_sub
|
||||||
|
theorem mul_ne_zero : ∀{a b : ℤ}, a ≠ 0 → b ≠ 0 → a * b ≠ 0 := @algebra.mul_ne_zero _ _
|
||||||
|
theorem mul.cancel_right : ∀{a b c : ℤ}, a ≠ 0 → b * a = c * a → b = c :=
|
||||||
|
@algebra.mul.cancel_right _ _
|
||||||
|
theorem mul.cancel_left : ∀{a b c : ℤ}, a ≠ 0 → a * b = a * c → b = c :=
|
||||||
|
@algebra.mul.cancel_left _ _
|
||||||
|
theorem mul_self_eq_mul_self_iff : ∀a b : ℤ, a * a = b * b ↔ a = b ∨ a = -b :=
|
||||||
|
algebra.mul_self_eq_mul_self_iff
|
||||||
|
theorem mul_self_eq_one_iff : ∀a : ℤ, a * a = 1 ↔ a = 1 ∨ a = -1 :=
|
||||||
|
algebra.mul_self_eq_one_iff
|
||||||
|
theorem dvd_of_mul_dvd_mul_left : ∀{a b c : ℤ}, a ≠ 0 → a * b | a * c → b | c :=
|
||||||
|
@algebra.dvd_of_mul_dvd_mul_left _ _
|
||||||
|
theorem dvd_of_mul_dvd_mul_right : ∀{a b c : ℤ}, a ≠ 0 → b * a | c * a → b | c :=
|
||||||
|
@algebra.dvd_of_mul_dvd_mul_right _ _
|
||||||
|
|
||||||
end port_algebra
|
end port_algebra
|
||||||
|
|
||||||
definition nonneg (a : ℤ) : Prop := cases_on a (take n, true) (take n, false)
|
-- TODO: declare appropriate rewrite rules
|
||||||
definition le (a b : ℤ) : Prop := nonneg (sub b a)
|
|
||||||
definition lt (a b : ℤ) : Prop := le (add a 1) b
|
|
||||||
|
|
||||||
infix - := int.sub
|
|
||||||
infix <= := int.le
|
|
||||||
infix ≤ := int.le
|
|
||||||
infix < := int.lt
|
|
||||||
|
|
||||||
definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := cases_on a _ _
|
|
||||||
definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _
|
|
||||||
definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _
|
|
||||||
|
|
||||||
/-
|
|
||||||
Other stuff.
|
|
||||||
TODO: pare down and clean up.
|
|
||||||
-/
|
|
||||||
|
|
||||||
definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p)
|
|
||||||
|
|
||||||
theorem pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q :=
|
|
||||||
calc
|
|
||||||
pabs p = nat_abs (abstr p) : nat_abs_abstr
|
|
||||||
... = nat_abs (abstr q) : abstr_eq H
|
|
||||||
... = pabs q : nat_abs_abstr
|
|
||||||
|
|
||||||
theorem nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) :=
|
|
||||||
calc
|
|
||||||
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
|
|
||||||
... = pabs (repr a) : nat_abs_abstr
|
|
||||||
|
|
||||||
theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
|
||||||
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
|
||||||
calc
|
|
||||||
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
|
||||||
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
|
||||||
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
|
||||||
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
|
||||||
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), from !dist_add_le_add_dist,
|
|
||||||
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
|
||||||
|
|
||||||
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
|
|
||||||
|
|
||||||
theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
|
||||||
|
|
||||||
theorem mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := rfl
|
|
||||||
|
|
||||||
theorem mul_nat_abs (a b : ℤ) : (nat_abs (a * b)) = #nat (nat_abs a) * (nat_abs b) :=
|
|
||||||
cases_on a
|
|
||||||
(take m,
|
|
||||||
cases_on b
|
|
||||||
(take n, rfl)
|
|
||||||
(take n', !nat_abs_neg ▸ rfl))
|
|
||||||
(take m',
|
|
||||||
cases_on b
|
|
||||||
(take n, !nat_abs_neg ▸ rfl)
|
|
||||||
(take n', rfl))
|
|
||||||
|
|
||||||
---reverse equalities, rename
|
|
||||||
theorem cases_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) :=
|
|
||||||
or.elim (cases a)
|
|
||||||
(assume H : (∃n : ℕ, a = of_nat n), or.inl H)
|
|
||||||
(assume H,
|
|
||||||
obtain (n : ℕ) (H2 : a = -(of_nat n)), from H,
|
|
||||||
discriminate
|
|
||||||
(assume H3 : n = nat.zero,
|
|
||||||
have H4 : a = of_nat nat.zero, from
|
|
||||||
calc
|
|
||||||
a = -(of_nat n) : H2
|
|
||||||
... = -(of_nat nat.zero) : {H3}
|
|
||||||
... = of_nat nat.zero : neg_zero,
|
|
||||||
or.inl (exists.intro nat.zero H4))
|
|
||||||
(take k : ℕ,
|
|
||||||
assume H3 : n = succ k,
|
|
||||||
have H4 : a = -(of_nat (succ k)), from H3 ▸ H2,
|
|
||||||
or.inr (exists.intro k H4)))
|
|
||||||
|
|
||||||
theorem int_by_cases_succ {P : ℤ → Prop} (a : ℤ)
|
|
||||||
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (-(of_nat (succ n)))) : P a :=
|
|
||||||
or.elim (cases_succ a)
|
|
||||||
(assume H, obtain (n : ℕ) (H3 : a = of_nat n), from H, H3⁻¹ ▸ H1 n)
|
|
||||||
(assume H, obtain (n : ℕ) (H3 : a = -(of_nat (succ n))), from H, H3⁻¹ ▸ H2 n)
|
|
||||||
|
|
||||||
theorem neg_sub' (a b : ℤ) : -(a - b) = -a + b :=
|
|
||||||
calc
|
|
||||||
-(a - b) = -a + -(-b) : neg_add_distrib a (-b)
|
|
||||||
... = -a + b : {neg_neg b}
|
|
||||||
|
|
||||||
theorem sub_add_assoc (a b c : ℤ) : a - b + c = a - (b - c) :=
|
|
||||||
calc
|
|
||||||
a - b + c = a + (-b + c) : add.assoc a (-b) c
|
|
||||||
... = a + -(b - c) : {(neg_sub' b c)⁻¹}
|
|
||||||
|
|
||||||
theorem add_sub_assoc (a b c : ℤ) : a + b - c = a + (b - c) :=
|
|
||||||
add.assoc a b (-c)
|
|
||||||
|
|
||||||
theorem add_sub_inverse2 (a b : ℤ) : a + b - a = b :=
|
|
||||||
add.comm b a ▸ !add_sub_cancel
|
|
||||||
|
|
||||||
-- add_rewrite add_left_id add_right_id
|
-- add_rewrite add_left_id add_right_id
|
||||||
-- add_rewrite add_comm add.assoc add_left_comm
|
-- add_rewrite add_comm add.assoc add_left_comm
|
||||||
-- add_rewrite sub_def add_inverse_right add_inverse_left
|
-- add_rewrite sub_def add_inverse_right add_inverse_left
|
||||||
|
@ -744,51 +753,6 @@ add.comm b a ▸ !add_sub_cancel
|
||||||
---- add_rewrite add_neg_right add_neg_left
|
---- add_rewrite add_neg_right add_neg_left
|
||||||
---- add_rewrite sub_self
|
---- add_rewrite sub_self
|
||||||
|
|
||||||
theorem mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 :=
|
|
||||||
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
|
||||||
calc
|
|
||||||
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
|
|
||||||
... = (nat_abs 0) : {H}
|
|
||||||
... = nat.zero : nat_abs_of_nat nat.zero,
|
|
||||||
have H3 : (nat_abs a) = nat.zero ∨ (nat_abs b) = nat.zero, from mul.eq_zero H2,
|
|
||||||
or_of_or_of_imp_of_imp H3
|
|
||||||
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
|
||||||
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
|
||||||
|
|
||||||
theorem mul_cancel_left_or {a b c : ℤ} (H : a * b = a * c) : a = 0 ∨ b = c :=
|
|
||||||
have H2 : a * (b - c) = 0, by simp,
|
|
||||||
have H3 : a = 0 ∨ b - c = 0, from mul_eq_zero H2,
|
|
||||||
or_of_or_of_imp_right H3 eq_of_sub_eq_zero
|
|
||||||
|
|
||||||
theorem mul_cancel_left {a b c : ℤ} (H1 : a ≠ 0) (H2 : a * b = a * c) : b = c :=
|
|
||||||
or_resolve_right (mul_cancel_left_or H2) H1
|
|
||||||
|
|
||||||
theorem mul_cancel_right_or {a b c : ℤ} (H : b * a = c * a) : a = 0 ∨ b = c :=
|
|
||||||
mul_cancel_left_or ((H ▸ (mul.comm b a)) ▸ mul.comm c a)
|
|
||||||
|
|
||||||
theorem mul_cancel_right {a b c : ℤ} (H1 : c ≠ 0) (H2 : a * c = b * c) : a = b :=
|
|
||||||
or_resolve_right (mul_cancel_right_or H2) H1
|
|
||||||
|
|
||||||
theorem mul_ne_zero {a b : ℤ} (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
|
|
||||||
(assume H : a * b = 0,
|
|
||||||
or.elim (mul_eq_zero H)
|
|
||||||
(assume H2 : a = 0, absurd H2 Ha)
|
|
||||||
(assume H2 : b = 0, absurd H2 Hb))
|
|
||||||
|
|
||||||
theorem mul_ne_zero_left {a b : ℤ} (H : a * b ≠ 0) : a ≠ 0 :=
|
|
||||||
(assume H2 : a = 0,
|
|
||||||
have H3 : a * b = 0, by simp,
|
|
||||||
absurd H3 H)
|
|
||||||
|
|
||||||
theorem mul_ne_zero_right {a b : ℤ} (H : a * b ≠ 0) : b ≠ 0 :=
|
|
||||||
mul_ne_zero_left (mul.comm a b ▸ H)
|
|
||||||
|
|
||||||
theorem sub_inj_left {a b c : ℤ} (H : a - b = a - c) : b = c :=
|
|
||||||
neg.inj (add.left_cancel H)
|
|
||||||
|
|
||||||
theorem sub_inj_right {a b c : ℤ} (H : a - b = c - b) : a = c :=
|
|
||||||
add.right_cancel H
|
|
||||||
|
|
||||||
end int
|
end int
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,6 +17,19 @@ open int eq.ops
|
||||||
|
|
||||||
namespace int
|
namespace int
|
||||||
|
|
||||||
|
definition nonneg (a : ℤ) : Prop := cases_on a (take n, true) (take n, false)
|
||||||
|
definition le (a b : ℤ) : Prop := nonneg (sub b a)
|
||||||
|
definition lt (a b : ℤ) : Prop := le (add a 1) b
|
||||||
|
|
||||||
|
infix - := int.sub
|
||||||
|
infix <= := int.le
|
||||||
|
infix ≤ := int.le
|
||||||
|
infix < := int.lt
|
||||||
|
|
||||||
|
definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := cases_on a _ _
|
||||||
|
definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _
|
||||||
|
definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _
|
||||||
|
|
||||||
theorem nonneg_elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
theorem nonneg_elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
||||||
cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
|
cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
|
||||||
|
|
||||||
|
@ -358,9 +371,9 @@ have H2 : -n ≤ 0, by simp,
|
||||||
le_trans H2 H1
|
le_trans H2 H1
|
||||||
|
|
||||||
theorem le_or_gt (a b : ℤ) : a ≤ b ∨ a > b :=
|
theorem le_or_gt (a b : ℤ) : a ≤ b ∨ a > b :=
|
||||||
by_cases a
|
by_cases_of_nat a
|
||||||
(take n : ℕ,
|
(take n : ℕ,
|
||||||
int_by_cases_succ b
|
by_cases_of_nat_succ b
|
||||||
(take m : ℕ,
|
(take m : ℕ,
|
||||||
show of_nat n ≤ m ∨ of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m))
|
show of_nat n ≤ m ∨ of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m))
|
||||||
(take m : ℕ,
|
(take m : ℕ,
|
||||||
|
@ -369,7 +382,7 @@ by_cases a
|
||||||
have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n),
|
have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n),
|
||||||
or.inr H))
|
or.inr H))
|
||||||
(take n : ℕ,
|
(take n : ℕ,
|
||||||
int_by_cases_succ b
|
by_cases_of_nat_succ b
|
||||||
(take m : ℕ,
|
(take m : ℕ,
|
||||||
show -n ≤ m ∨ -n > m, from
|
show -n ≤ m ∨ -n > m, from
|
||||||
or.inl (neg_le_pos n m))
|
or.inl (neg_le_pos n m))
|
||||||
|
@ -599,7 +612,7 @@ or.elim (em (a = 0))
|
||||||
have H2 : (nat_abs (a * b)) ≠ 0, from
|
have H2 : (nat_abs (a * b)) ≠ 0, from
|
||||||
take H2', mul_ne_zero Ha Hb (nat_abs_eq_zero H2'),
|
take H2', mul_ne_zero Ha Hb (nat_abs_eq_zero H2'),
|
||||||
have H3 : (nat_abs (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
|
have H3 : (nat_abs (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
|
||||||
mul_cancel_right H3 H))
|
mul.cancel_right H3 H))
|
||||||
|
|
||||||
theorem sign_idempotent (a : ℤ) : sign (sign a) = sign a :=
|
theorem sign_idempotent (a : ℤ) : sign (sign a) = sign a :=
|
||||||
have temp : of_nat 1 > 0, from iff.elim_left (iff.symm (lt_of_nat 0 1)) !succ_pos,
|
have temp : of_nat 1 > 0, from iff.elim_left (iff.symm (lt_of_nat 0 1)) !succ_pos,
|
||||||
|
|
Loading…
Reference in a new issue