refactor(library/data/int): make int instance of integral domain

This commit is contained in:
Jeremy Avigad 2014-12-22 14:21:22 -05:00
parent da7a403b6c
commit 0f0da64264
3 changed files with 158 additions and 165 deletions

View file

@ -47,12 +47,29 @@ theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zer
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A, structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A,
zero_ne_one_class A zero_ne_one_class A
section semiring
variables [s : semiring A] (a b c : A)
include s
theorem ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
assume H1 : a = 0,
have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul_eq b,
H H2
theorem ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
assume H1 : b = 0,
have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero_eq a,
H H2
end semiring
/- comm semiring -/
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying c ≠ 0 → c * a = c * b → a = b. -- TODO: we could also define a cancelative comm_semiring, i.e. satisfying c ≠ 0 → c * a = c * b → a = b.
/- abstract divisibility -/
section comm_semiring section comm_semiring
variables [s : comm_semiring A] (a b c : A) variables [s : comm_semiring A] (a b c : A)
@ -69,7 +86,6 @@ section comm_semiring
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P := theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
exists.elim H₁ H₂ exists.elim H₁ H₂
theorem dvd.refl : a | a := dvd.intro (!mul.right_id) theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c := theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
@ -274,8 +290,8 @@ section
-a * -c = a * c : neg_mul_neg_eq -a * -c = a * c : neg_mul_neg_eq
... = b : H'))) ... = b : H')))
theorem dvd_sub (H₁ : a | b) (H₂ : a | c) : a | (b - c) := theorem dvd_sub (H₁ : a | b) (H₂ : a | c) : a | (b - c) :=
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂) dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
end end
@ -298,7 +314,7 @@ section
variables [s : integral_domain A] (a b c d e : A) variables [s : integral_domain A] (a b c d e : A)
include s include s
theorem mul_ne_zero_of_ne_zero_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 := theorem mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
assume H : a * b = 0, assume H : a * b = 0,
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4) or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)

View file

@ -47,7 +47,7 @@ definition int.of_num [coercion] (n : num) : := int.of_nat (nat.of_num n)
namespace int namespace int
/- computational definitions of basic functions -/ /- definitions of basic functions -/
definition neg_of_nat (m : ) : := definition neg_of_nat (m : ) : :=
nat.cases_on m 0 (take m', neg_succ_of_nat m') nat.cases_on m 0 (take m', neg_succ_of_nat m')
@ -115,6 +115,12 @@ cases_on a
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else (if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
inr (take H1, H (neg_succ_of_nat_inj H1))))) inr (take H1, H (neg_succ_of_nat_inj H1)))))
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
theorem of_nat_succ (n : ) : of_nat (succ n) = of_nat n + 1 := rfl
theorem mul_of_nat (n m : ) : of_nat n * of_nat m = n * m := rfl
theorem sub_nat_nat_of_ge {m n : } (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) := theorem sub_nat_nat_of_ge {m n : } (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
have H1 : n - m = 0, from le_imp_sub_eq_zero H, have H1 : n - m = 0, from le_imp_sub_eq_zero H,
calc calc
@ -290,17 +296,28 @@ or.elim (@le_or_gt n m)
... = n - m : succ_pred_of_pos (sub_pos_of_gt H) ... = n - m : succ_pred_of_pos (sub_pos_of_gt H)
... = dist m n : dist_le (lt_imp_le H)) ... = dist m n : dist_le (lt_imp_le H))
theorem cases (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat n) := theorem cases_of_nat (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat n) :=
cases_on a cases_on a
(take n, or.inl (exists.intro n rfl)) (take n, or.inl (exists.intro n rfl))
(take n', or.inr (exists.intro (succ n') rfl)) (take n', or.inr (exists.intro (succ n') rfl))
theorem by_cases {P : → Prop} (a : ) (H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat n)) : theorem cases_of_nat_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
theorem by_cases_of_nat {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat n)) :
P a := P a :=
or.elim (cases a) or.elim (cases_of_nat a)
(assume H, obtain (n : ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
(assume H, obtain (n : ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n) (assume H, obtain (n : ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
theorem by_cases_of_nat_succ {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat (succ n))) :
P a :=
or.elim (cases_of_nat_succ a)
(assume H, obtain (n : ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
(assume H, obtain (n : ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
/- /-
Show int is a ring. Show int is a ring.
-/ -/
@ -417,6 +434,42 @@ have H : repr (-a + a) ≡ repr 0, from
... ≡ repr 0 : padd_pneg, ... ≡ repr 0 : padd_pneg,
eq_of_repr_equiv_repr H eq_of_repr_equiv_repr H
/- nat -/
definition pabs (p : × ) : := dist (pr1 p) (pr2 p)
theorem pabs_congr {p q : × } (H : p ≡ q) : pabs p = pabs q :=
calc
pabs p = nat_abs (abstr p) : nat_abs_abstr
... = nat_abs (abstr q) : abstr_eq H
... = pabs q : nat_abs_abstr
theorem nat_abs_eq_pabs_repr (a : ) : nat_abs a = pabs (repr a) :=
calc
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
... = pabs (repr a) : nat_abs_abstr
theorem nat_abs_add_le (a b : ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
calc
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), from !dist_add_le_add_dist,
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
theorem mul_nat_abs (a b : ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
cases_on a
(take m,
cases_on b
(take n, rfl)
(take n', !nat_abs_neg ▸ rfl))
(take m',
cases_on b
(take n, !nat_abs_neg ▸ rfl)
(take n', rfl))
/- multiplication -/ /- multiplication -/
definition pmul (p q : × ) : × := definition pmul (p q : × ) : × :=
@ -536,18 +589,30 @@ theorem zero_ne_one : (typeof 0 : int) ≠ 1 :=
assume H : 0 = 1, assume H : 0 = 1,
show false, from succ_ne_zero 0 ((of_nat_inj H)⁻¹) show false, from succ_ne_zero 0 ((of_nat_inj H)⁻¹)
definition comm_ring : algebra.comm_ring int := theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 :=
algebra.comm_ring.mk add add.assoc zero add.left_id add.right_id neg add.left_inv have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
calc
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
... = (nat_abs 0) : {H}
... = nat.zero : nat_abs_of_nat nat.zero,
have H3 : (nat_abs a) = nat.zero (nat_abs b) = nat.zero, from mul.eq_zero H2,
or_of_or_of_imp_of_imp H3
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
definition integral_domain : algebra.integral_domain int :=
algebra.integral_domain.mk add add.assoc zero add.left_id add.right_id neg add.left_inv
add.comm mul mul.assoc (of_num 1) mul.left_id mul.right_id mul.left_distrib mul.right_distrib add.comm mul mul.assoc (of_num 1) mul.left_id mul.right_id mul.left_distrib mul.right_distrib
zero_ne_one mul.comm zero_ne_one mul.comm @eq_zero_or_eq_zero_of_mul_eq_zero
/- /-
Instantiate ring theorems to int Instantiate ring theorems to int
-/ -/
-- TODO: make this "section" when scoping bug is fixed
context port_algebra context port_algebra
open algebra -- TODO: can we "open" algebra only for the duration of this section? open algebra
instance comm_ring instance integral_domain
theorem mul.left_comm : ∀a b c : , a * (b * c) = b * (a * c) := algebra.mul.left_comm theorem mul.left_comm : ∀a b c : , a * (b * c) = b * (a * c) := algebra.mul.left_comm
theorem mul.right_comm : ∀a b c : , (a * b) * c = (a * c) * b := algebra.mul.right_comm theorem mul.right_comm : ∀a b c : , (a * b) * c = (a * c) * b := algebra.mul.right_comm
@ -590,10 +655,8 @@ context port_algebra
@algebra.add_eq_iff_eq_neg_add _ _ @algebra.add_eq_iff_eq_neg_add _ _
theorem add_eq_iff_eq_add_neg : ∀a b c : , a + b = c ↔ a = c + -b := theorem add_eq_iff_eq_add_neg : ∀a b c : , a + b = c ↔ a = c + -b :=
@algebra.add_eq_iff_eq_add_neg _ _ @algebra.add_eq_iff_eq_add_neg _ _
definition sub (a b : ) : := algebra.sub a b definition sub (a b : ) : := algebra.sub a b
infix - := int.sub infix - := int.sub
theorem sub_self : ∀a : , a - a = 0 := algebra.sub_self theorem sub_self : ∀a : , a - a = 0 := algebra.sub_self
theorem sub_add_cancel : ∀a b : , a - b + b = a := algebra.sub_add_cancel theorem sub_add_cancel : ∀a b : , a - b + b = a := algebra.sub_add_cancel
theorem add_sub_cancel : ∀a b : , a + b - b = a := algebra.add_sub_cancel theorem add_sub_cancel : ∀a b : , a + b - b = a := algebra.add_sub_cancel
@ -617,6 +680,34 @@ context port_algebra
theorem sub_sub_eq : ∀a b c : , a - b - c = a - (b + c) := algebra.sub_sub_eq theorem sub_sub_eq : ∀a b c : , a - b - c = a - (b + c) := algebra.sub_sub_eq
theorem add_sub_add_left_eq_sub : ∀a b c : , (c + a) - (c + b) = a - b := theorem add_sub_add_left_eq_sub : ∀a b c : , (c + a) - (c + b) = a - b :=
algebra.add_sub_add_left_eq_sub algebra.add_sub_add_left_eq_sub
theorem ne_zero_of_mul_ne_zero_right : ∀{a b : }, a * b ≠ 0 → a ≠ 0 :=
@algebra.ne_zero_of_mul_ne_zero_right _ _
theorem ne_zero_of_mul_ne_zero_left : ∀{a b : }, a * b ≠ 0 → b ≠ 0 :=
@algebra.ne_zero_of_mul_ne_zero_left _ _
definition dvd (a b : ) : Prop := algebra.dvd a b
infix `|` := dvd
theorem dvd.intro : ∀{a b c : } (H : a * b = c), a | c := @algebra.dvd.intro _ _
theorem dvd.ex : ∀{a b : } (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _
theorem dvd.elim : ∀{P : Prop} {a b : } (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P :=
@algebra.dvd.elim _ _
theorem dvd.refl : ∀a : , a | a := algebra.dvd.refl
theorem dvd.trans : ∀{a b c : } (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _
theorem eq_zero_of_zero_dvd : ∀(a : ) {H : 0 | a}, a = 0 := @algebra.eq_zero_of_zero_dvd _ _
theorem dvd_zero : ∀a : , a | 0 := algebra.dvd_zero
theorem one_dvd : ∀a : , 1 | a := algebra.one_dvd
theorem dvd_mul_right : ∀a b : , a | a * b := algebra.dvd_mul_right
theorem dvd_mul_left : ∀a b : , a | b * a := algebra.dvd_mul_left
theorem dvd_mul_of_dvd_left : ∀{a b : } (H : a | b) (c : ), a | b * c :=
@algebra.dvd_mul_of_dvd_left _ _
theorem dvd_mul_of_dvd_right : ∀{a b : } (H : a | b) (c : ), a | c * b :=
@algebra.dvd_mul_of_dvd_right _ _
theorem mul_dvd_mul : ∀{a b c d : }, a | b → c | d → a * c | b * d :=
@algebra.mul_dvd_mul _ _
theorem dvd_of_mul_right_dvd : ∀{a b c : }, a * b | c → a | c :=
@algebra.dvd_of_mul_right_dvd _ _
theorem dvd_of_mul_left_dvd : ∀{a b c : }, a * b | c → b | c :=
@algebra.dvd_of_mul_left_dvd _ _
theorem dvd_add : ∀{a b c : }, a | b → a | c → a | b + c := @algebra.dvd_add _ _
theorem zero_mul_eq : ∀a : , 0 * a = 0 := algebra.zero_mul_eq theorem zero_mul_eq : ∀a : , 0 * a = 0 := algebra.zero_mul_eq
theorem mul_zero_eq : ∀a : , a * 0 = 0 := algebra.mul_zero_eq theorem mul_zero_eq : ∀a : , a * 0 = 0 := algebra.mul_zero_eq
theorem neg_mul_eq_neg_mul : ∀a b : , -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul theorem neg_mul_eq_neg_mul : ∀a b : , -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
@ -634,108 +725,26 @@ context port_algebra
algebra.mul_self_sub_mul_self_eq algebra.mul_self_sub_mul_self_eq
theorem mul_self_sub_one_eq : ∀a : , a * a - 1 = (a + 1) * (a - 1) := theorem mul_self_sub_one_eq : ∀a : , a * a - 1 = (a + 1) * (a - 1) :=
algebra.mul_self_sub_one_eq algebra.mul_self_sub_one_eq
theorem dvd_neg_iff_dvd : ∀a b : , a | -b ↔ a | b := algebra.dvd_neg_iff_dvd
theorem neg_dvd_iff_dvd : ∀a b : , -a | b ↔ a | b := algebra.neg_dvd_iff_dvd
theorem dvd_sub : ∀a b c : , a | b → a | c → a | (b - c) := algebra.dvd_sub
theorem mul_ne_zero : ∀{a b : }, a ≠ 0 → b ≠ 0 → a * b ≠ 0 := @algebra.mul_ne_zero _ _
theorem mul.cancel_right : ∀{a b c : }, a ≠ 0 → b * a = c * a → b = c :=
@algebra.mul.cancel_right _ _
theorem mul.cancel_left : ∀{a b c : }, a ≠ 0 → a * b = a * c → b = c :=
@algebra.mul.cancel_left _ _
theorem mul_self_eq_mul_self_iff : ∀a b : , a * a = b * b ↔ a = b a = -b :=
algebra.mul_self_eq_mul_self_iff
theorem mul_self_eq_one_iff : ∀a : , a * a = 1 ↔ a = 1 a = -1 :=
algebra.mul_self_eq_one_iff
theorem dvd_of_mul_dvd_mul_left : ∀{a b c : }, a ≠ 0 → a * b | a * c → b | c :=
@algebra.dvd_of_mul_dvd_mul_left _ _
theorem dvd_of_mul_dvd_mul_right : ∀{a b c : }, a ≠ 0 → b * a | c * a → b | c :=
@algebra.dvd_of_mul_dvd_mul_right _ _
end port_algebra end port_algebra
definition nonneg (a : ) : Prop := cases_on a (take n, true) (take n, false) -- TODO: declare appropriate rewrite rules
definition le (a b : ) : Prop := nonneg (sub b a)
definition lt (a b : ) : Prop := le (add a 1) b
infix - := int.sub
infix <= := int.le
infix ≤ := int.le
infix < := int.lt
definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
/-
Other stuff.
TODO: pare down and clean up.
-/
definition pabs (p : × ) : := dist (pr1 p) (pr2 p)
theorem pabs_congr {p q : × } (H : p ≡ q) : pabs p = pabs q :=
calc
pabs p = nat_abs (abstr p) : nat_abs_abstr
... = nat_abs (abstr q) : abstr_eq H
... = pabs q : nat_abs_abstr
theorem nat_abs_eq_pabs_repr (a : ) : nat_abs a = pabs (repr a) :=
calc
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
... = pabs (repr a) : nat_abs_abstr
theorem nat_abs_add_le (a b : ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
calc
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), from !dist_add_le_add_dist,
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
theorem of_nat_succ (n : ) : of_nat (succ n) = of_nat n + 1 := rfl
theorem mul_of_nat (n m : ) : of_nat n * of_nat m = n * m := rfl
theorem mul_nat_abs (a b : ) : (nat_abs (a * b)) = #nat (nat_abs a) * (nat_abs b) :=
cases_on a
(take m,
cases_on b
(take n, rfl)
(take n', !nat_abs_neg ▸ rfl))
(take m',
cases_on b
(take n, !nat_abs_neg ▸ rfl)
(take n', rfl))
---reverse equalities, rename
theorem cases_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
or.elim (cases a)
(assume H : (∃n : , a = of_nat n), or.inl H)
(assume H,
obtain (n : ) (H2 : a = -(of_nat n)), from H,
discriminate
(assume H3 : n = nat.zero,
have H4 : a = of_nat nat.zero, from
calc
a = -(of_nat n) : H2
... = -(of_nat nat.zero) : {H3}
... = of_nat nat.zero : neg_zero,
or.inl (exists.intro nat.zero H4))
(take k : ,
assume H3 : n = succ k,
have H4 : a = -(of_nat (succ k)), from H3 ▸ H2,
or.inr (exists.intro k H4)))
theorem int_by_cases_succ {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (-(of_nat (succ n)))) : P a :=
or.elim (cases_succ a)
(assume H, obtain (n : ) (H3 : a = of_nat n), from H, H3⁻¹ ▸ H1 n)
(assume H, obtain (n : ) (H3 : a = -(of_nat (succ n))), from H, H3⁻¹ ▸ H2 n)
theorem neg_sub' (a b : ) : -(a - b) = -a + b :=
calc
-(a - b) = -a + -(-b) : neg_add_distrib a (-b)
... = -a + b : {neg_neg b}
theorem sub_add_assoc (a b c : ) : a - b + c = a - (b - c) :=
calc
a - b + c = a + (-b + c) : add.assoc a (-b) c
... = a + -(b - c) : {(neg_sub' b c)⁻¹}
theorem add_sub_assoc (a b c : ) : a + b - c = a + (b - c) :=
add.assoc a b (-c)
theorem add_sub_inverse2 (a b : ) : a + b - a = b :=
add.comm b a ▸ !add_sub_cancel
-- add_rewrite add_left_id add_right_id -- add_rewrite add_left_id add_right_id
-- add_rewrite add_comm add.assoc add_left_comm -- add_rewrite add_comm add.assoc add_left_comm
-- add_rewrite sub_def add_inverse_right add_inverse_left -- add_rewrite sub_def add_inverse_right add_inverse_left
@ -744,51 +753,6 @@ add.comm b a ▸ !add_sub_cancel
---- add_rewrite add_neg_right add_neg_left ---- add_rewrite add_neg_right add_neg_left
---- add_rewrite sub_self ---- add_rewrite sub_self
theorem mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 :=
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
calc
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
... = (nat_abs 0) : {H}
... = nat.zero : nat_abs_of_nat nat.zero,
have H3 : (nat_abs a) = nat.zero (nat_abs b) = nat.zero, from mul.eq_zero H2,
or_of_or_of_imp_of_imp H3
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
theorem mul_cancel_left_or {a b c : } (H : a * b = a * c) : a = 0 b = c :=
have H2 : a * (b - c) = 0, by simp,
have H3 : a = 0 b - c = 0, from mul_eq_zero H2,
or_of_or_of_imp_right H3 eq_of_sub_eq_zero
theorem mul_cancel_left {a b c : } (H1 : a ≠ 0) (H2 : a * b = a * c) : b = c :=
or_resolve_right (mul_cancel_left_or H2) H1
theorem mul_cancel_right_or {a b c : } (H : b * a = c * a) : a = 0 b = c :=
mul_cancel_left_or ((H ▸ (mul.comm b a)) ▸ mul.comm c a)
theorem mul_cancel_right {a b c : } (H1 : c ≠ 0) (H2 : a * c = b * c) : a = b :=
or_resolve_right (mul_cancel_right_or H2) H1
theorem mul_ne_zero {a b : } (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
(assume H : a * b = 0,
or.elim (mul_eq_zero H)
(assume H2 : a = 0, absurd H2 Ha)
(assume H2 : b = 0, absurd H2 Hb))
theorem mul_ne_zero_left {a b : } (H : a * b ≠ 0) : a ≠ 0 :=
(assume H2 : a = 0,
have H3 : a * b = 0, by simp,
absurd H3 H)
theorem mul_ne_zero_right {a b : } (H : a * b ≠ 0) : b ≠ 0 :=
mul_ne_zero_left (mul.comm a b ▸ H)
theorem sub_inj_left {a b c : } (H : a - b = a - c) : b = c :=
neg.inj (add.left_cancel H)
theorem sub_inj_right {a b c : } (H : a - b = c - b) : a = c :=
add.right_cancel H
end int end int

View file

@ -17,6 +17,19 @@ open int eq.ops
namespace int namespace int
definition nonneg (a : ) : Prop := cases_on a (take n, true) (take n, false)
definition le (a b : ) : Prop := nonneg (sub b a)
definition lt (a b : ) : Prop := le (add a 1) b
infix - := int.sub
infix <= := int.le
infix ≤ := int.le
infix < := int.lt
definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
theorem nonneg_elim {a : } : nonneg a → ∃n : , a = n := theorem nonneg_elim {a : } : nonneg a → ∃n : , a = n :=
cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H) cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
@ -358,9 +371,9 @@ have H2 : -n ≤ 0, by simp,
le_trans H2 H1 le_trans H2 H1
theorem le_or_gt (a b : ) : a ≤ b a > b := theorem le_or_gt (a b : ) : a ≤ b a > b :=
by_cases a by_cases_of_nat a
(take n : , (take n : ,
int_by_cases_succ b by_cases_of_nat_succ b
(take m : , (take m : ,
show of_nat n ≤ m of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m)) show of_nat n ≤ m of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m))
(take m : , (take m : ,
@ -369,7 +382,7 @@ by_cases a
have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n), have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n),
or.inr H)) or.inr H))
(take n : , (take n : ,
int_by_cases_succ b by_cases_of_nat_succ b
(take m : , (take m : ,
show -n ≤ m -n > m, from show -n ≤ m -n > m, from
or.inl (neg_le_pos n m)) or.inl (neg_le_pos n m))
@ -599,7 +612,7 @@ or.elim (em (a = 0))
have H2 : (nat_abs (a * b)) ≠ 0, from have H2 : (nat_abs (a * b)) ≠ 0, from
take H2', mul_ne_zero Ha Hb (nat_abs_eq_zero H2'), take H2', mul_ne_zero Ha Hb (nat_abs_eq_zero H2'),
have H3 : (nat_abs (a * b)) ≠ of_nat 0, from mt of_nat_inj H2, have H3 : (nat_abs (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
mul_cancel_right H3 H)) mul.cancel_right H3 H))
theorem sign_idempotent (a : ) : sign (sign a) = sign a := theorem sign_idempotent (a : ) : sign (sign a) = sign a :=
have temp : of_nat 1 > 0, from iff.elim_left (iff.symm (lt_of_nat 0 1)) !succ_pos, have temp : of_nat 1 > 0, from iff.elim_left (iff.symm (lt_of_nat 0 1)) !succ_pos,