From 1042f6c29dbb037ebcb8fe7d7a1fb06932ba4124 Mon Sep 17 00:00:00 2001 From: Jakob von Raumer Date: Tue, 2 Feb 2016 18:44:01 +0000 Subject: [PATCH] feat(hott): port finite ordinal sets from the std library, with all things related to nat.mod and to fintype still missing. create a logic.hlean file for further extension of the logic theory in the prelude. add distributivity lemmas for products and sums. --- hott/logic.hlean | 18 ++ hott/types/fin.hlean | 541 ++++++++++++++++++++++++++++++++++++++++++ hott/types/prod.hlean | 11 +- hott/types/sum.hlean | 27 +++ 4 files changed, 596 insertions(+), 1 deletion(-) create mode 100644 hott/logic.hlean create mode 100644 hott/types/fin.hlean diff --git a/hott/logic.hlean b/hott/logic.hlean new file mode 100644 index 000000000..662148113 --- /dev/null +++ b/hott/logic.hlean @@ -0,0 +1,18 @@ +/- +Copyright (c) Jakob von Raumer. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Jakob von Raumer + +Logic lemmas we don't want/need in the prelude. +-/ +import types.pi + +open eq is_trunc decidable + +theorem dif_pos {c : Type} [H : decidable c] [P : is_hprop c] (Hc : c) + {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = t Hc := +by induction H with Hc Hnc; apply ap t; apply is_hprop.elim; apply absurd Hc Hnc + +theorem dif_neg {c : Type} [H : decidable c] (Hnc : ¬c) + {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = e Hnc := +by induction H with Hc Hnc; apply absurd Hc Hnc; apply ap e; apply is_hprop.elim diff --git a/hott/types/fin.hlean b/hott/types/fin.hlean new file mode 100644 index 000000000..1c78cddea --- /dev/null +++ b/hott/types/fin.hlean @@ -0,0 +1,541 @@ +/- +Copyright (c) 2015 Haitao Zhang. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Haitao Zhang, Leonardo de Moura, Jakob von Raumer + +Finite ordinal types. +-/ +import types.list algebra.group function logic types.prod types.sum +open eq nat function list equiv is_trunc algebra sigma sum + +structure fin (n : nat) := (val : nat) (is_lt : val < n) + +definition less_than [reducible] := fin + +namespace fin + +attribute fin.val [coercion] + +section def_equal +variable {n : nat} + +definition sigma_char : fin n ≃ Σ (val : nat), val < n := +begin + fapply equiv.MK, + intro i, cases i with i ilt, apply dpair i ilt, + intro s, cases s with i ilt, apply fin.mk i ilt, + intro s, cases s with i ilt, reflexivity, + intro i, cases i with i ilt, reflexivity +end + +definition is_hset_fin [instance] : is_hset (fin n) := +begin + apply is_trunc_equiv_closed, apply equiv.symm, apply sigma_char, +end + +definition eq_of_veq : Π {i j : fin n}, (val i) = j → i = j := +begin + intro i j, cases i with i ilt, cases j with j jlt, esimp, + intro p, induction p, apply ap (mk i), apply !is_hprop.elim +end + +definition eq_of_veq_refl (i : fin n) : eq_of_veq (refl (val i)) = idp := +!is_hprop.elim + +definition veq_of_eq : Π {i j : fin n}, i = j → (val i) = j := +by intro i j P; apply ap val; exact P + + +definition eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j := +pair eq_of_veq veq_of_eq + +definition val_inj := @eq_of_veq n + +end def_equal + +section decidable +open decidable + +protected definition has_decidable_eq [instance] (n : nat) : + Π (i j : fin n), decidable (i = j) := +begin + intros i j, apply decidable_of_decidable_of_iff, + apply nat.has_decidable_eq i j, apply eq_iff_veq, +end + +end decidable + +/-lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := +take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe) + +lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl + +definition upto [reducible] (n : nat) : list (fin n) := +dmap (λ i, i < n) fin.mk (list.upto n) + +lemma nodup_upto (n : nat) : nodup (upto n) := +dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n) + +lemma mem_upto (n : nat) : Π (i : fin n), i ∈ upto n := +take i, fin.destruct i + (take ival Piltn, + assert ival ∈ list.upto n, from mem_upto_of_lt Piltn, + mem_dmap Piltn this) + +lemma upto_zero : upto 0 = [] := +by rewrite [↑upto, list.upto_nil, dmap_nil] + +lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n := +map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n) + +lemma length_upto (n : nat) : length (upto n) = n := +calc + length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹ + ... = n : list.length_upto n + +definition is_fintype [instance] (n : nat) : fintype (fin n) := +fintype.mk (upto n) (nodup_upto n) (mem_upto n) + +section pigeonhole +open fintype + +lemma card_fin (n : nat) : card (fin n) = n := length_upto n + +theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬Σ f : fin n → fin m, injective f := +assume Pex, absurd Pmltn (not_lt_of_ge + (calc + n = card (fin n) : card_fin + ... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex + ... = m : card_fin)) + +end pigeonhole-/ + +protected definition zero [constructor] (n : nat) : fin (succ n) := +mk 0 !zero_lt_succ + +definition fin_has_zero [instance] [reducible] (n : nat) : has_zero (fin (succ n)) := +has_zero.mk (fin.zero n) + +definition val_zero (n : nat) : val (0 : fin (succ n)) = 0 := rfl + +/-definition mk_mod [reducible] (n i : nat) : fin (succ n) := +mk (i % (succ n)) (mod_lt _ !zero_lt_succ)-/ + +/-theorem mk_mod_zero_eq (n : nat) : mk_mod n 0 = 0 := +rfl-/ + +variable {n : nat} + +theorem val_lt : Π i : fin n, val i < n +| (mk v h) := h + +lemma max_lt (i j : fin n) : max i j < n := +max_lt (is_lt i) (is_lt j) + +definition lift [constructor] : fin n → Π m : nat, fin (n + m) +| (mk v h) m := mk v (lt_add_of_lt_right h m) + +definition lift_succ [constructor] (i : fin n) : fin (nat.succ n) := +have r : fin (n+1), from lift i 1, +r + +definition maxi [reducible] : fin (succ n) := +mk n !lt_succ_self + +definition val_lift : Π (i : fin n) (m : nat), val i = val (lift i m) +| (mk v h) m := rfl + +lemma mk_succ_ne_zero {i : nat} : Π {P}, mk (succ i) P ≠ (0 : fin (succ n)) := +assume P Pe, absurd (veq_of_eq Pe) !succ_ne_zero + +/-lemma mk_mod_eq {i : fin (succ n)} : i = mk_mod n i := +eq_of_veq begin rewrite [↑mk_mod, mod_eq_of_lt !is_lt] end + +lemma mk_mod_of_lt {i : nat} (Plt : i < succ n) : mk_mod n i = mk i Plt := +begin esimp [mk_mod], congruence, exact mod_eq_of_lt Plt end +-/ +section lift_lower + +lemma lift_zero : lift_succ (0 : fin (succ n)) = (0 : fin (succ (succ n))) := +by apply eq_of_veq; reflexivity + +lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi := +begin + intro hlt he, assert he' : maxi = i, apply he⁻¹, induction he', apply nat.lt_irrefl n hlt, +end + +lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n := +assume hne : i ≠ maxi, +assert vne : val i ≠ n, from + assume he, + have val (@maxi n) = n, from rfl, + have val i = val (@maxi n), from he ⬝ this⁻¹, + absurd (eq_of_veq this) hne, +have val i < nat.succ n, from val_lt i, +lt_of_le_of_ne (le_of_lt_succ this) vne + +lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi := +begin + cases i with v hlt, esimp [lift_succ, lift, max], intro he, + injection he, substvars, + exact absurd hlt (lt.irrefl v) +end + +lemma lift_succ_inj [instance] : is_embedding (@lift_succ n) := +begin + apply is_embedding_of_is_injective, intro i j, + induction i with iv ilt, induction j with jv jlt, intro Pmkeq, + apply eq_of_veq, apply veq_of_eq Pmkeq +end + +definition lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) : + is_embedding f → (f maxi = maxi) → Π i : fin (succ n), i < n → f i < n := +assume Pinj Peq, take i, assume Pilt, +assert P1 : f i = f maxi → i = maxi, from assume Peq, is_injective_of_is_embedding Peq, +have f i ≠ maxi, from + begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end, +lt_max_of_ne_max this + +definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) := +λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne)))) + +definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : is_embedding f) : + f maxi = maxi → fin n → fin n := +assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max)) + +lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi := +begin rewrite [↑lift_fun, dif_pos rfl] end + +lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) : + lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) := +begin rewrite [↑lift_fun, dif_neg Pne] end + +lemma lift_fun_eq {f : fin n → fin n} {i : fin n} : + lift_fun f (lift_succ i) = lift_succ (f i) := +begin + rewrite [lift_fun_of_ne_max lift_succ_ne_max], do 2 congruence, + apply eq_of_veq, esimp, rewrite -val_lift, +end + +lemma lift_fun_of_inj {f : fin n → fin n} : is_embedding f → is_embedding (lift_fun f) := +begin + intro Pemb, apply is_embedding_of_is_injective, intro i j, + assert Pdi : decidable (i = maxi), apply _, + assert Pdj : decidable (j = maxi), apply _, + cases Pdi with Pimax Pinmax, + cases Pdj with Pjmax Pjnmax, + substvars, intros, reflexivity, + substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax], + intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max, + cases Pdj with Pjmax Pjnmax, + substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax], + intro Plmax, apply absurd Plmax lift_succ_ne_max, + rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax], + intro Peq, apply eq_of_veq, + cases i with i ilt, cases j with j jlt, esimp at *, + fapply veq_of_eq, apply is_injective_of_is_embedding, + apply @is_injective_of_is_embedding _ _ lift_succ _ _ _ Peq, +end + +lemma lift_fun_inj : is_embedding (@lift_fun n) := +begin + apply is_embedding_of_is_injective, intro f f' Peq, apply eq_of_homotopy, intro i, + assert H : lift_fun f (lift_succ i) = lift_fun f' (lift_succ i), apply congr_fun Peq _, + revert H, rewrite [*lift_fun_eq], apply is_injective_of_is_embedding, +end + +lemma lower_inj_apply {f Pinj Pmax} (i : fin n) : + val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) := +by rewrite [↑lower_inj] + +end lift_lower +/- +section madd + +definition madd (i j : fin (succ n)) : fin (succ n) := +mk ((i + j) % (succ n)) (mod_lt _ !zero_lt_succ) + +definition minv : Π i : fin (succ n), fin (succ n) +| (mk iv ilt) := mk ((succ n - iv) % succ n) (mod_lt _ !zero_lt_succ) + +lemma val_madd : Π i j : fin (succ n), val (madd i j) = (i + j) % (succ n) +| (mk iv ilt) (mk jv jlt) := by esimp + +lemma madd_inj : Π {i : fin (succ n)}, injective (madd i) +| (mk iv ilt) := +take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin + rewrite [↑madd, -eq_iff_veq], + intro Peq, congruence, + rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)], + apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq +end)) + +lemma madd_mk_mod {i j : nat} : madd (mk_mod n i) (mk_mod n j) = mk_mod n (i+j) := +eq_of_veq begin esimp [madd, mk_mod], rewrite [ mod_add_mod, add_mod_mod ] end + +lemma val_mod : Π i : fin (succ n), (val i) % (succ n) = val i +| (mk iv ilt) := by esimp; rewrite [(mod_eq_of_lt ilt)] + +lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i := +by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)] + +lemma zero_madd (i : fin (succ n)) : madd 0 i = i := +have H : madd (fin.zero n) i = i, + by apply eq_of_veq; rewrite [val_madd, ↑fin.zero, nat.zero_add, mod_eq_of_lt (is_lt i)], +H + +lemma madd_zero (i : fin (succ n)) : madd i (fin.zero n) = i := +!madd_comm ▸ zero_madd i + +lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) := +by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)] + +lemma madd_left_inv : Π i : fin (succ n), madd (minv i) i = fin.zero n +| (mk iv ilt) := eq_of_veq (by + rewrite [val_madd, ↑minv, ↑fin.zero, mod_add_mod, nat.sub_add_cancel (le_of_lt ilt), mod_self]) + +definition madd_is_comm_group [instance] : add_comm_group (fin (succ n)) := +add_comm_group.mk madd madd_assoc (fin.zero n) zero_madd madd_zero minv madd_left_inv madd_comm + +end madd-/ + +definition pred [constructor] : fin n → fin n +| (mk v h) := mk (nat.pred v) (pre_lt_of_lt h) + +lemma val_pred : Π (i : fin n), val (pred i) = nat.pred (val i) +| (mk v h) := rfl + +lemma pred_zero : pred (fin.zero n) = fin.zero n := +begin + induction n, reflexivity, apply eq_of_veq, reflexivity, +end + +definition mk_pred (i : nat) (h : succ i < succ n) : fin n := +mk i (lt_of_succ_lt_succ h) + +definition succ : fin n → fin (succ n) +| (mk v h) := mk (nat.succ v) (succ_lt_succ h) + +lemma val_succ : Π (i : fin n), val (succ i) = nat.succ (val i) +| (mk v h) := rfl + +lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl + +lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ := +eq_of_homotopy take i, + eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end) + +definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i +| (mk v h) := absurd h !not_lt_zero + +definition zero_succ_cases {C : fin (nat.succ n) → Type} : + C (fin.zero n) → (Π j : fin n, C (succ j)) → (Π k : fin (nat.succ n), C k) := +begin + intros CO CS k, + induction k with [vk, pk], + induction (nat.decidable_lt 0 vk) with [HT, HF], + { show C (mk vk pk), from + let vj := nat.pred vk in + have vk = vj+1, from + inverse (succ_pred_of_pos HT), + assert vj < n, from + lt_of_succ_lt_succ (eq.subst `vk = vj+1` pk), + have succ (mk vj `vj < n`) = mk vk pk, from + val_inj (inverse `vk = vj+1`), + eq.rec_on this (CS (mk vj `vj < n`)) }, + { show C (mk vk pk), from + have vk = 0, from + eq_zero_of_le_zero (le_of_not_gt HF), + have fin.zero n = mk vk pk, from + val_inj (inverse this), + eq.rec_on this CO } +end + +definition succ_maxi_cases {C : fin (nat.succ n) → Type} : + (Π j : fin n, C (lift_succ j)) → C maxi → (Π k : fin (nat.succ n), C k) := +begin + intros CL CM k, + induction k with [vk, pk], + induction (nat.decidable_lt vk n) with [HT, HF], + { show C (mk vk pk), from + have HL : lift_succ (mk vk HT) = mk vk pk, from + val_inj rfl, + eq.rec_on HL (CL (mk vk HT)) }, + { show C (mk vk pk), from + have HMv : vk = n, from + le.antisymm (le_of_lt_succ pk) (le_of_not_gt HF), + have HM : maxi = mk vk pk, from + val_inj (inverse HMv), + eq.rec_on HM CM } +end + +open decidable + +-- TODO there has to be a less painful way to do this +definition elim_succ_maxi_cases_lift_succ {C : fin (nat.succ n) → Type} + {Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} (i : fin n) : + succ_maxi_cases Cls Cm (lift_succ i) = Cls i := +begin + esimp[succ_maxi_cases], cases i with i ilt, esimp, + apply decidable.rec, + { intro ilt', esimp[val_inj], apply concat, + apply ap (λ x, eq.rec_on x _), esimp[eq_of_veq, rfl], reflexivity, + assert H : ilt = ilt', apply is_hprop.elim, cases H, + assert H' : is_hprop.elim (lt_add_of_lt_right ilt 1) (lt_add_of_lt_right ilt 1) = idp, + apply is_hprop.elim, + krewrite H' }, + { intro a, contradiction }, +end + +definition elim_succ_maxi_cases_maxi {C : fin (nat.succ n) → Type} + {Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} : + succ_maxi_cases Cls Cm maxi = Cm := +begin + esimp[succ_maxi_cases, maxi], + apply decidable.rec, + { intro a, apply absurd a !nat.lt_irrefl }, + { intro a, esimp[val_inj], apply concat, + assert H : (le.antisymm (le_of_lt_succ (lt_succ_self n)) (le_of_not_gt a))⁻¹ = idp, + apply is_hprop.elim, + apply ap _ H, krewrite eq_of_veq_refl }, +end + +definition foldr {A B : Type} (m : A → B → B) (b : B) : Π {n : nat}, (fin n → A) → B := + nat.rec (λ f, b) (λ n IH f, m (f (fin.zero n)) (IH (λ i : fin n, f (succ i)))) + +definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B := + nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi)) + +theorem choice {C : fin n → Type} : + (Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) := +begin + revert C, + induction n with [n, IH], + { intros C H, + apply nonempty.intro, + exact elim0 }, + { intros C H, + fapply nonempty.elim (H (fin.zero n)), + intro CO, + fapply nonempty.elim (IH (λ i, C (succ i)) (λ i, H (succ i))), + intro CS, + apply nonempty.intro, + exact zero_succ_cases CO CS } +end + +/-section +open list +local postfix `+1`:100 := nat.succ + +lemma dmap_map_lift {n : nat} : Π l : list nat, (Π i, i ∈ l → i < n) → dmap (λ i, i < n +1) mk l = map lift_succ (dmap (λ i, i < n) mk l) +| [] := assume Plt, rfl +| (i::l) := assume Plt, begin + rewrite [@dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons], + congruence, + apply dmap_map_lift, + intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end + +lemma upto_succ (n : nat) : upto (n +1) = maxi :: map lift_succ (upto n) := +begin + rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (nat.self_lt_succ n)], + congruence, + apply dmap_map_lift, apply @list.lt_of_mem_upto +end + +definition upto_step : Π {n : nat}, fin.upto (n +1) = (map succ (upto n))++[0] +| 0 := rfl +| (i +1) := begin rewrite [upto_succ i, map_cons, append_cons, succ_max, upto_succ, -lift_zero], + congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ 0), -map_append, -upto_step] end +end-/ + +open sum equiv decidable + +definition fin_zero_equiv_empty : fin 0 ≃ empty := +begin + fapply equiv.MK, rotate 1, do 2 (intro x; contradiction), + rotate 1, do 2 (intro x; apply elim0 x) +end + +definition is_contr_fin_one [instance] : is_contr (fin 1) := +begin + fapply is_contr.mk, exact 0, + intro x, induction x with v vlt, + apply eq_of_veq, rewrite val_zero, + apply inverse, apply eq_zero_of_le_zero, apply le_of_succ_le_succ, exact vlt, +end + +definition fin_sum_equiv (n m : nat) : (fin n + fin m) ≃ fin (n+m) := +begin + fapply equiv.MK, + { intro s, induction s with l r, + induction l with v vlt, apply mk v, apply lt_add_of_lt_right, exact vlt, + induction r with v vlt, apply mk (v + n), rewrite {n + m}add.comm, + apply add_lt_add_of_lt_of_le vlt, apply nat.le_refl }, + { intro f, induction f with v vlt, + exact if h : v < n + then sum.inl (mk v h) + else sum.inr (mk (v-n) (nat.sub_lt_of_lt_add vlt (le_of_not_gt h))) }, + { intro f, cases f with v vlt, esimp, apply @by_cases (v < n), + intro vltn, rewrite [dif_pos vltn], apply eq_of_veq, reflexivity, + intro nvltn, rewrite [dif_neg nvltn], apply eq_of_veq, esimp, + apply nat.sub_add_cancel, apply le_of_not_gt, apply nvltn }, + { intro s, cases s with f g, + cases f with v vlt, rewrite [dif_pos vlt], + cases g with v vlt, esimp, have ¬ v + n < n, from + suppose v + n < n, + assert v < n - n, from nat.lt_sub_of_add_lt this !le.refl, + have v < 0, by rewrite [nat.sub_self at this]; exact this, + absurd this !not_lt_zero, + apply concat, apply dif_neg this, apply ap inr, apply eq_of_veq, esimp, + apply nat.add_sub_cancel }, +end + +definition fin_succ_equiv (n : nat) : fin (n + 1) ≃ fin n + unit := +begin + fapply equiv.MK, + { apply succ_maxi_cases, esimp, apply inl, apply inr unit.star }, + { intro d, cases d, apply lift_succ a, apply maxi }, + { intro d, cases d, + cases a with a alt, esimp, apply elim_succ_maxi_cases_lift_succ, + cases a, apply elim_succ_maxi_cases_maxi }, + { intro a, apply succ_maxi_cases, esimp, + intro j, krewrite elim_succ_maxi_cases_lift_succ, + krewrite elim_succ_maxi_cases_maxi }, +end + +open prod + +definition fin_prod_equiv (n m : nat) : (fin n × fin m) ≃ fin (n*m) := +begin + induction n, + { rewrite nat.zero_mul, + calc fin 0 × fin m ≃ empty × fin m : fin_zero_equiv_empty + ... ≃ fin m × empty : prod_comm_equiv + ... ≃ empty : prod_empty_equiv + ... ≃ fin 0 : fin_zero_equiv_empty }, + { assert H : (a + 1) * m = a * m + m, rewrite [nat.right_distrib, one_mul], + calc fin (a + 1) × fin m + ≃ (fin a + unit) × fin m : prod.prod_equiv_prod_right !fin_succ_equiv + ... ≃ (fin a × fin m) + (unit × fin m) : sum_prod_right_distrib + ... ≃ (fin a × fin m) + (fin m × unit) : prod_comm_equiv + ... ≃ fin (a * m) + (fin m × unit) : v_0 + ... ≃ fin (a * m) + fin m : prod_unit_equiv + ... ≃ fin (a * m + m) : fin_sum_equiv + ... ≃ fin ((a + 1) * m) : equiv_of_eq (ap fin H) }, +end + +definition fin_two_equiv_bool : fin 2 ≃ bool := +let H := equiv_unit_of_is_contr (fin 1) in +calc + fin 2 ≃ fin (1 + 1) : equiv.refl + ... ≃ fin 1 + fin 1 : fin_sum_equiv + ... ≃ unit + unit : H + ... ≃ bool : bool_equiv_unit_sum_unit + +definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (n+1) := +let H := equiv_unit_of_is_contr (fin 1) in +calc + fin n + unit ≃ fin n + fin 1 : H + ... ≃ fin (n+1) : fin_sum_equiv + +end fin diff --git a/hott/types/prod.hlean b/hott/types/prod.hlean index d5140792a..8e5375340 100644 --- a/hott/types/prod.hlean +++ b/hott/types/prod.hlean @@ -1,7 +1,7 @@ /- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. -Author: Floris van Doorn +Authors: Floris van Doorn, Jakob von Raumer Ported from Coq HoTT Theorems about products @@ -182,6 +182,15 @@ namespace prod definition prod_unit_equiv [constructor] (A : Type) : A × unit ≃ A := !prod_contr_equiv + definition prod_empty_equiv (A : Type) : A × empty ≃ empty := + begin + fapply equiv.MK, + { intro x, cases x with a e, cases e }, + { intro e, cases e }, + { intro e, cases e }, + { intro x, cases x with a e, cases e } + end + /- Universal mapping properties -/ definition is_equiv_prod_rec [instance] [constructor] (P : A × B → Type) : is_equiv (prod.rec : (Πa b, P (a, b)) → Πu, P u) := diff --git a/hott/types/sum.hlean b/hott/types/sum.hlean index eab20e92e..7a219615e 100644 --- a/hott/types/sum.hlean +++ b/hott/types/sum.hlean @@ -168,6 +168,33 @@ namespace sum definition empty_sum_equiv (A : Type) : empty + A ≃ A := !sum_comm_equiv ⬝e !sum_empty_equiv + definition bool_equiv_unit_sum_unit : bool ≃ unit + unit := + begin + fapply equiv.MK, + { intro b, cases b, exact inl unit.star, exact inr unit.star }, + { intro s, cases s, exact bool.ff, exact bool.tt }, + { intro s, cases s, do 2 (cases a; reflexivity) }, + { intro b, cases b, do 2 reflexivity }, + end + + definition sum_prod_right_distrib [constructor] (A B C : Type) : + (A + B) × C ≃ (A × C) + (B × C) := + begin + fapply equiv.MK, + { intro x, cases x with ab c, cases ab with a b, exact inl (a, c), exact inr (b, c) }, + { intro x, cases x with ac bc, cases ac with a c, exact (inl a, c), + cases bc with b c, exact (inr b, c) }, + { intro x, cases x with ac bc, cases ac with a c, reflexivity, cases bc, reflexivity }, + { intro x, cases x with ab c, cases ab with a b, do 2 reflexivity } + end + + definition sum_prod_left_distrib [constructor] (A B C : Type) : + A × (B + C) ≃ (A × B) + (A × C) := + calc A × (B + C) ≃ (B + C) × A : prod_comm_equiv + ... ≃ (B × A) + (C × A) : sum_prod_right_distrib + ... ≃ (A × B) + (C × A) : prod_comm_equiv + ... ≃ (A × B) + (A × C) : prod_comm_equiv + /- universal property -/ definition sum_rec_unc [unfold 5] {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b)))