diff --git a/hott/algebra/category/constructions/order.hlean b/hott/algebra/category/constructions/order.hlean index ae77b9541..3e4ca2bf9 100644 --- a/hott/algebra/category/constructions/order.hlean +++ b/hott/algebra/category/constructions/order.hlean @@ -13,8 +13,8 @@ namespace category section universe variable l -parameters (A : Type.{l}) [HA : is_hset A] [OA : weak_order.{l} A] - [Hle : Π a b : A, is_hprop (a ≤ b)] +parameters (A : Type.{l}) [HA : is_set A] [OA : weak_order.{l} A] + [Hle : Π a b : A, is_prop (a ≤ b)] include A HA OA Hle definition precategory_order [constructor] : precategory.{l l} A := @@ -23,7 +23,7 @@ begin { intro a b, exact a ≤ b }, { intro a b c, exact ge.trans }, { intro a, apply le.refl }, - do 5 (intros; apply is_hprop.elim), + do 5 (intros; apply is_prop.elim), { intros, apply is_trunc_succ } end @@ -33,19 +33,11 @@ definition category_order : category.{l l} A := begin fapply category.mk precategory_order, intros a b, fapply adjointify, - { intro f, apply le.antisymm, apply (iso.to_hom f), apply (iso.to_inv f) }, - { intro f, fapply iso_eq, esimp[precategory_order], apply is_hprop.elim }, - { intro p, apply is_hprop.elim } + { intro f, apply le.antisymm, apply iso.to_hom f, apply iso.to_inv f }, + { intro f, fapply iso_eq, esimp[precategory_order], apply is_prop.elim }, + { intro p, apply is_prop.elim } end end -open fin - -definition category_fin [constructor] (n : nat) : category (fin n) := -category_order (fin n) - -definition Category_fin [reducible] [constructor] (n : nat) : Category := -Category.mk (fin n) (category_fin n) - end category diff --git a/hott/types/type_functor.hlean b/hott/types/type_functor.hlean index 25d60ca2b..2e7465e23 100644 --- a/hott/types/type_functor.hlean +++ b/hott/types/type_functor.hlean @@ -9,7 +9,7 @@ More or less ported from Evan Cavallo's HoTT-Agda homotopy library. import types.pointed -open equiv function pointed Pointed +open equiv function pointed structure type_functor : Type := (fun_ty : Type → Type)