feat(hott): add [unfold-c] and [constructor] attributes for HITs
This commit is contained in:
parent
9893de6194
commit
111c8e1529
10 changed files with 82 additions and 8 deletions
|
@ -12,7 +12,7 @@ import .sphere types.bool types.eq types.int.hott types.arrow types.equiv
|
||||||
|
|
||||||
open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc
|
open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc
|
||||||
|
|
||||||
definition circle [reducible] := sphere 1
|
definition circle : Type₀ := sphere 1
|
||||||
|
|
||||||
namespace circle
|
namespace circle
|
||||||
|
|
||||||
|
@ -50,7 +50,7 @@ namespace circle
|
||||||
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||||||
!rec_merid
|
!rec_merid
|
||||||
|
|
||||||
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) (x : circle) : P :=
|
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P :=
|
||||||
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
|
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
|
||||||
|
|
||||||
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
|
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
|
||||||
|
@ -71,6 +71,21 @@ namespace circle
|
||||||
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2],
|
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2],
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type :=
|
||||||
|
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
|
||||||
|
|
||||||
|
definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||||||
|
: Type :=
|
||||||
|
elim2_type Pb1 Pb2 Ps1 Ps2 x
|
||||||
|
|
||||||
|
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||||||
|
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||||||
|
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
|
||||||
|
|
||||||
|
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||||||
|
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||||||
|
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
|
||||||
|
|
||||||
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase)
|
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase)
|
||||||
(x : circle) : P x :=
|
(x : circle) : P x :=
|
||||||
begin
|
begin
|
||||||
|
@ -133,7 +148,19 @@ namespace circle
|
||||||
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||||||
transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
||||||
by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop
|
by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop
|
||||||
|
end circle
|
||||||
|
|
||||||
|
attribute circle.base circle.base1 circle.base2 [constructor]
|
||||||
|
attribute circle.rec circle.elim [unfold-c 4]
|
||||||
|
attribute circle.elim_type [unfold-c 3]
|
||||||
|
attribute circle.rec_on circle.elim_on [unfold-c 2]
|
||||||
|
attribute circle.elim_type_on [unfold-c 1]
|
||||||
|
attribute circle.rec2 circle.elim2 [unfold-c 6]
|
||||||
|
attribute circle.elim2_type [unfold-c 5]
|
||||||
|
attribute circle.rec2_on circle.elim2_on [unfold-c 2]
|
||||||
|
attribute circle.elim2_type [unfold-c 1]
|
||||||
|
|
||||||
|
namespace circle
|
||||||
definition loop_neq_idp : loop ≠ idp :=
|
definition loop_neq_idp : loop ≠ idp :=
|
||||||
assume H : loop = idp,
|
assume H : loop = idp,
|
||||||
have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp,
|
have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp,
|
||||||
|
@ -155,7 +182,7 @@ namespace circle
|
||||||
|
|
||||||
open int
|
open int
|
||||||
|
|
||||||
protected definition code (x : circle) : Type₀ :=
|
protected definition code [unfold-c 1] (x : circle) : Type₀ :=
|
||||||
circle.elim_type_on x ℤ equiv_succ
|
circle.elim_type_on x ℤ equiv_succ
|
||||||
|
|
||||||
definition transport_code_loop (a : ℤ) : transport code loop a = succ a :=
|
definition transport_code_loop (a : ℤ) : transport code loop a = succ a :=
|
||||||
|
@ -168,7 +195,6 @@ namespace circle
|
||||||
protected definition encode {x : circle} (p : base = x) : code x :=
|
protected definition encode {x : circle} (p : base = x) : code x :=
|
||||||
transport code p (of_num 0) -- why is the explicit coercion needed here?
|
transport code p (of_num 0) -- why is the explicit coercion needed here?
|
||||||
|
|
||||||
--attribute type_quotient.rec_on [unfold-c 4]
|
|
||||||
definition circle_eq_equiv (x : circle) : (base = x) ≃ code x :=
|
definition circle_eq_equiv (x : circle) : (base = x) ≃ code x :=
|
||||||
begin
|
begin
|
||||||
fapply equiv.MK,
|
fapply equiv.MK,
|
||||||
|
@ -179,9 +205,7 @@ namespace circle
|
||||||
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
|
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
|
||||||
rewrite [transport_code_loop_inv,power_con,succ_pred]}},
|
rewrite [transport_code_loop_inv,power_con,succ_pred]}},
|
||||||
{ refine circle.rec_on x _ _,
|
{ refine circle.rec_on x _ _,
|
||||||
{ intro a, esimp [circle.rec_on, circle.rec, base, rec2_on, rec2, base1,
|
{ intro a, esimp [base,base1], --simplify after #587
|
||||||
suspension.rec_on, suspension.rec, north, pushout.rec_on, pushout.rec,
|
|
||||||
pushout.inl, type_quotient.rec_on], --simplify after #587
|
|
||||||
apply rec_nat_on a,
|
apply rec_nat_on a,
|
||||||
{ exact idp},
|
{ exact idp},
|
||||||
{ intros n p,
|
{ intros n p,
|
||||||
|
@ -191,7 +215,7 @@ namespace circle
|
||||||
apply transport (λ(y : base = base), transport code y _ = _),
|
apply transport (λ(y : base = base), transport code y _ = _),
|
||||||
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
|
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
|
||||||
rewrite [▸*,con_tr,transport_code_loop_inv, ↑[encode,code] at p, p, -neg_succ]}},
|
rewrite [▸*,con_tr,transport_code_loop_inv, ↑[encode,code] at p, p, -neg_succ]}},
|
||||||
{ apply eq_of_homotopy, intro a, apply @is_hset.elim, change is_hset ℤ, exact _}},
|
{ apply eq_of_homotopy, intro a, esimp [base,base1] at *, }},
|
||||||
--simplify after #587
|
--simplify after #587
|
||||||
{ intro p, cases p, exact idp},
|
{ intro p, cases p, exact idp},
|
||||||
end
|
end
|
||||||
|
|
|
@ -79,3 +79,9 @@ parameters {A B : Type.{u}} (f g : A → B)
|
||||||
end
|
end
|
||||||
|
|
||||||
end coeq
|
end coeq
|
||||||
|
|
||||||
|
attribute coeq.coeq_i [constructor]
|
||||||
|
attribute coeq.rec coeq.elim [unfold-c 8]
|
||||||
|
attribute coeq.elim_type [unfold-c 7]
|
||||||
|
attribute coeq.rec_on coeq.elim_on [unfold-c 6]
|
||||||
|
attribute coeq.elim_type_on [unfold-c 5]
|
||||||
|
|
|
@ -171,3 +171,13 @@ section
|
||||||
|
|
||||||
end
|
end
|
||||||
end seq_colim
|
end seq_colim
|
||||||
|
|
||||||
|
attribute colimit.incl seq_colim.inclusion [constructor]
|
||||||
|
attribute colimit.rec colimit.elim [unfold-c 10]
|
||||||
|
attribute colimit.elim_type [unfold-c 9]
|
||||||
|
attribute colimit.rec_on colimit.elim_on [unfold-c 8]
|
||||||
|
attribute colimit.elim_type_on [unfold-c 7]
|
||||||
|
attribute seq_colim.rec seq_colim.elim [unfold-c 6]
|
||||||
|
attribute seq_colim.elim_type [unfold-c 5]
|
||||||
|
attribute seq_colim.rec_on seq_colim.elim_on [unfold-c 4]
|
||||||
|
attribute seq_colim.elim_type_on [unfold-c 3]
|
||||||
|
|
|
@ -89,3 +89,9 @@ parameters {A B : Type.{u}} (f : A → B)
|
||||||
end
|
end
|
||||||
|
|
||||||
end cylinder
|
end cylinder
|
||||||
|
|
||||||
|
attribute cylinder.base cylinder.top [constructor]
|
||||||
|
attribute cylinder.rec cylinder.elim [unfold-c 8]
|
||||||
|
attribute cylinder.elim_type [unfold-c 7]
|
||||||
|
attribute cylinder.rec_on cylinder.elim_on [unfold-c 5]
|
||||||
|
attribute cylinder.elim_type_on [unfold-c 4]
|
||||||
|
|
|
@ -111,3 +111,9 @@ end
|
||||||
|
|
||||||
end test
|
end test
|
||||||
end pushout
|
end pushout
|
||||||
|
|
||||||
|
attribute pushout.inl pushout.inr [constructor]
|
||||||
|
attribute pushout.rec pushout.elim [unfold-c 10]
|
||||||
|
attribute pushout.elim_type [unfold-c 9]
|
||||||
|
attribute pushout.rec_on pushout.elim_on [unfold-c 7]
|
||||||
|
attribute pushout.elim_type_on [unfold-c 6]
|
||||||
|
|
|
@ -72,3 +72,7 @@ parameters {A : Type} (R : A → A → hprop)
|
||||||
|
|
||||||
end
|
end
|
||||||
end quotient
|
end quotient
|
||||||
|
|
||||||
|
attribute quotient.class_of [constructor]
|
||||||
|
attribute quotient.rec quotient.elim [unfold-c 7]
|
||||||
|
attribute quotient.rec_on quotient.elim_on [unfold-c 4]
|
||||||
|
|
|
@ -72,3 +72,9 @@ namespace suspension
|
||||||
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_merid];apply cast_ua_fn
|
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_merid];apply cast_ua_fn
|
||||||
|
|
||||||
end suspension
|
end suspension
|
||||||
|
|
||||||
|
attribute suspension.north suspension.south [constructor]
|
||||||
|
attribute suspension.rec suspension.elim [unfold-c 6]
|
||||||
|
attribute suspension.elim_type [unfold-c 5]
|
||||||
|
attribute suspension.rec_on suspension.elim_on [unfold-c 3]
|
||||||
|
attribute suspension.elim_type_on [unfold-c 2]
|
||||||
|
|
|
@ -134,3 +134,6 @@ namespace trunc
|
||||||
end
|
end
|
||||||
|
|
||||||
end trunc
|
end trunc
|
||||||
|
|
||||||
|
attribute trunc.elim [unfold-c 6]
|
||||||
|
attribute trunc.elim_on [unfold-c 4]
|
||||||
|
|
|
@ -51,3 +51,8 @@ namespace type_quotient
|
||||||
|
|
||||||
|
|
||||||
end type_quotient
|
end type_quotient
|
||||||
|
|
||||||
|
attribute type_quotient.elim [unfold-c 6]
|
||||||
|
attribute type_quotient.elim_type [unfold-c 5]
|
||||||
|
attribute type_quotient.elim_on [unfold-c 4]
|
||||||
|
attribute type_quotient.elim_type_on [unfold-c 3]
|
||||||
|
|
|
@ -84,3 +84,7 @@ namespace type_quotient
|
||||||
(Pc : Π(a : A), P (class_of R a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel R H ▸ Pc a = Pc a')
|
(Pc : Π(a : A), P (class_of R a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel R H ▸ Pc a = Pc a')
|
||||||
{a a' : A} (H : R a a') : apd (type_quotient.rec Pc Pp) (eq_of_rel R H) = Pp H
|
{a a' : A} (H : R a a') : apd (type_quotient.rec Pc Pp) (eq_of_rel R H) = Pp H
|
||||||
end type_quotient
|
end type_quotient
|
||||||
|
|
||||||
|
attribute type_quotient.class_of trunc.tr [constructor]
|
||||||
|
attribute type_quotient.rec trunc.rec [unfold-c 6]
|
||||||
|
attribute type_quotient.rec_on trunc.rec_on [unfold-c 4]
|
||||||
|
|
Loading…
Reference in a new issue