fix(builtin/num): remove hacks for making the elaborator happy

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-02-10 14:05:51 -08:00
parent b7b868de85
commit 11a2b3016f
2 changed files with 2 additions and 2 deletions

View file

@ -296,7 +296,7 @@ theorem disj_to_lt_succ {m n : num} : m = n m < n → m < succ n
have H1 : n < succ n, have H1 : n < succ n,
from n_lt_succ_n n, from n_lt_succ_n n,
show m < succ n, show m < succ n,
from substp (λ x, x < succ n) H1 (symm Hl)) -- TODO, improve elaborator to catch this case from subst H1 (symm Hl))
(λ Hr : m < n, lt_to_lt_succ Hr) (λ Hr : m < n, lt_to_lt_succ Hr)
theorem lt_succ_ne_to_lt {m n : num} : m < succ n → m ≠ n → m < n theorem lt_succ_ne_to_lt {m n : num} : m < succ n → m ≠ n → m < n
@ -480,7 +480,7 @@ theorem prim_rec_thm {A : (Type U)} (x : A) (f : A → num → A)
have Heq2 : simp_rec (λ n, x) faux (succ m) = faux (simp_rec (λ n, x) faux m), have Heq2 : simp_rec (λ n, x) faux (succ m) = faux (simp_rec (λ n, x) faux m),
from and_elimr (simp_rec_thm (λ n, x) faux) m, from and_elimr (simp_rec_thm (λ n, x) faux) m,
calc prim_rec x f (succ m) = prim_rec_fun x f (succ m) (pre (succ m)) : refl _ calc prim_rec x f (succ m) = prim_rec_fun x f (succ m) (pre (succ m)) : refl _
... = prim_rec_fun x f (succ m) m : congr2 (prim_rec_fun x f (succ m)) Heq1 ... = prim_rec_fun x f (succ m) m : { Heq1 }
... = simp_rec (λ n, x) faux (succ m) m : refl _ ... = simp_rec (λ n, x) faux (succ m) m : refl _
... = faux (simp_rec (λ n, x) faux m) m : congr1 Heq2 m ... = faux (simp_rec (λ n, x) faux m) m : congr1 Heq2 m
... = f (prim_rec x f m) m : refl _, ... = f (prim_rec x f m) m : refl _,

Binary file not shown.