feat(library/data/nat): naive square root function

This commit is contained in:
Leonardo de Moura 2015-04-13 11:47:04 -07:00
parent 2453a6ab45
commit 11c9bb4626
2 changed files with 59 additions and 1 deletions

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
-/
import .basic .order .sub .div .bquant
import .basic .order .sub .div .bquant .sqrt

View file

@ -0,0 +1,58 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.nat.sqrt
Authors: Leonardo de Moura
Very simple (sqrt n) function that returns s s.t.
s*s ≤ n ≤ s*s + s + s
-/
import data.nat.order
namespace nat
open decidable
-- This is the simplest possible function that just performs a linear search
definition sqrt_aux : nat → nat → nat
| 0 n := 0
| (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n
theorem sqrt_aux_suc_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) :=
assume h, if_pos h
theorem sqrt_aux_suc_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n :=
assume h, if_neg h
definition sqrt (n : nat) : nat :=
sqrt_aux n n
theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n
| 0 n h := h
| (succ s) n h := by_cases
(λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_suc_of_pos h₁]; exact h₁)
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
assert aux : s ≤ n, from lt.step (lt_of_succ_le h),
by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_lower aux))
theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n :=
sqrt_aux_lower (le.refl n)
theorem succ_squared (n : nat) : succ n * succ n = n*n + n + n + 1 :=
calc succ n * succ n = (n+1)*(n+1) : by rewrite [add_one]
... = n*n + n + n + 1 : by rewrite [mul.right_distrib, mul.left_distrib, one_mul, mul_one]
theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n
| 0 n h := h
| (succ s) n h := by_cases
(λ h₁ : (succ s)*(succ s) ≤ n,
by rewrite [sqrt_aux_suc_of_pos h₁]; exact h)
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
assert h₃ : n < (succ s) * (succ s), from lt_of_not_le h₂,
assert h₄ : n ≤ s * s + s + s, by rewrite [succ_squared at h₃]; exact h₃,
by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_upper h₄))
theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n :=
have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)),
sqrt_aux_upper aux
end nat