feat(frontends/lean/pp): display implicit arguments when expression contains metavariables
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d83a13d044
commit
12451e4a35
3 changed files with 19 additions and 4 deletions
|
@ -640,7 +640,7 @@ class pp_fn {
|
||||||
result pp_app(expr const & e, unsigned depth) {
|
result pp_app(expr const & e, unsigned depth) {
|
||||||
if (!m_coercion && is_coercion(e))
|
if (!m_coercion && is_coercion(e))
|
||||||
return pp(arg(e, 1), depth);
|
return pp(arg(e, 1), depth);
|
||||||
application app(e, *this, m_implict);
|
application app(e, *this, m_implict || has_metavar(e));
|
||||||
operator_info op;
|
operator_info op;
|
||||||
if (m_notation && app.notation_enabled() && (op = get_operator(e)) && has_expected_num_args(app, op)) {
|
if (m_notation && app.notation_enabled() && (op = get_operator(e)) && has_expected_num_args(app, op)) {
|
||||||
result p_arg;
|
result p_arg;
|
||||||
|
|
|
@ -44,8 +44,8 @@ Failed to solve
|
||||||
a
|
a
|
||||||
a
|
a
|
||||||
b
|
b
|
||||||
refl a
|
@refl ?M::5 a
|
||||||
refl b
|
@refl ?M::6 b
|
||||||
Failed to solve
|
Failed to solve
|
||||||
⊢ ?M::1 ≺ Type
|
⊢ ?M::1 ≺ Type
|
||||||
elab1.lean:22:6: Type of argument 1 must be convertible to the expected type in the application of
|
elab1.lean:22:6: Type of argument 1 must be convertible to the expected type in the application of
|
||||||
|
|
|
@ -11,4 +11,19 @@ Failed to solve
|
||||||
?M::3
|
?M::3
|
||||||
λ m : ℕ, Nat::add_zerol m ⋈ symm (Nat::add_zeror m)
|
λ m : ℕ, Nat::add_zerol m ⋈ symm (Nat::add_zeror m)
|
||||||
λ (n : ℕ) (iH : ?M::3 n) (m : ℕ),
|
λ (n : ℕ) (iH : ?M::3 n) (m : ℕ),
|
||||||
Nat::add_succl n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add_succr m n)
|
@trans ℕ
|
||||||
|
(n + 1 + m)
|
||||||
|
(m + n + 1)
|
||||||
|
(m + (n + 1))
|
||||||
|
(@trans ℕ
|
||||||
|
(n + 1 + m)
|
||||||
|
(n + m + 1)
|
||||||
|
(m + n + 1)
|
||||||
|
(Nat::add_succl n m)
|
||||||
|
(@subst ?M::14
|
||||||
|
?M::15
|
||||||
|
?M::16
|
||||||
|
(λ x : ?M::14, (?M::48[lift:0:1]) x == (?M::49[lift:0:1]) x)
|
||||||
|
(refl (n + m + 1))
|
||||||
|
iH))
|
||||||
|
(symm (Nat::add_succr m n))
|
||||||
|
|
Loading…
Reference in a new issue