refactor(library/algebra): explicit parameters also for fun instances

This commit is contained in:
Johannes Hölzl 2016-01-06 16:20:38 +01:00 committed by Leonardo de Moura
parent 6d6a00f48b
commit 12571c92d8
3 changed files with 4 additions and 4 deletions

View file

@ -278,7 +278,7 @@ open eq.ops complete_lattice
definition complete_lattice_fun [instance] (A B : Type) [complete_lattice B] :
complete_lattice (A → B) :=
⦃ complete_lattice, lattice_fun,
⦃ complete_lattice, lattice_fun A B,
Inf := λS x, Inf ((λf, f x) ' S),
le_Inf := take f S H x,
le_Inf (take y Hy, obtain g `g ∈ S` `g x = y`, from Hy, `g x = y` ▸ H g `g ∈ S` x),

View file

@ -121,8 +121,8 @@ definition lattice_Prop [instance] : lattice Prop :=
le_sup_right := @or.intro_right
definition lattice_fun [instance] {A B : Type} [lattice B] : lattice (A → B) :=
⦃ lattice, weak_order_fun,
definition lattice_fun [instance] (A B : Type) [lattice B] : lattice (A → B) :=
⦃ lattice, weak_order_fun A B,
inf := λf g x, inf (f x) (g x),
le_inf := take f g h Hf Hg x, le_inf (Hf x) (Hg x),
inf_le_left := take f g x, !inf_le_left,

View file

@ -445,7 +445,7 @@ definition weak_order_Prop [instance] : weak_order Prop :=
le_antisymm := λf g H1 H2, propext (and.intro H1 H2)
definition weak_order_fun [instance] {A B : Type} [weak_order B] : weak_order (A → B) :=
definition weak_order_fun [instance] (A B : Type) [weak_order B] : weak_order (A → B) :=
⦃ weak_order,
le := λx y, ∀b, x b ≤ y b,
le_refl := λf b, !le.refl,