feat(hott/homotopy): add join switch and derive associativity from switch

This commit is contained in:
Jakob von Raumer 2015-10-16 15:03:44 +01:00 committed by Leonardo de Moura
parent 149e5fff9f
commit 12a498d411

View file

@ -84,81 +84,33 @@ namespace join
do 2 apply join.swap_involutive, do 2 apply join.swap_involutive,
end end
exit protected definition switch (A B C : Type) :
section join (join A B) C → join (join C B) A :=
parameters (A B C : Type)
private definition assoc_fun [reducible] :
join (join A B) C → join A (join B C) :=
begin begin
intro x, induction x with ab c, induction ab with a b, intro x, induction x with ab c,
exact inl a, exact inr (inl b), induction ab with a b, exact inr a, exact inl (inr b),
induction x with a b, apply jglue, exact inr (inr c), apply !jglue⁻¹, exact inl (inl c), esimp,
induction x with ab c, induction ab with a b, apply jglue, induction x with ab c, induction ab with a b, apply !jglue⁻¹,
apply ap inr, apply jglue, induction x with a b, apply ap inl, apply !jglue⁻¹, induction x with a b, esimp,
let H := apdo (jglue a) (jglue b c), esimp at H, esimp, let H := eq_of_square (square_of_pathover (apdo (λ x, jglue x a) (jglue c b))),
let H' := transpose (square_of_pathover H), esimp at H', rewrite [ap_constant at H, con_idp at H], apply eq_pathover, esimp,
rewrite ap_constant at H', apply eq_pathover, krewrite [elim_glue, ap_constant, ap_inv], esimp, apply hinverse,
krewrite [elim_glue, ap_constant], esimp, esimp at *, apply square_of_eq, krewrite [H, con.assoc, con.right_inv],
apply square_of_eq, apply concat, rotate 1, exact eq_of_square H', krewrite [idp_con],
rewrite [con_idp, idp_con],
end end
print definition join.switch
private definition assoc_inv [reducible] : protected definition switch_involutive (A B C : Type) (x : join (join A B) C) :
join A (join B C) → join (join A B) C := join.switch C B A (join.switch A B C x) = x := sorry
begin
intro x, induction x with a bc, exact inl (inl a),
induction bc with b c, exact inl (inr b), exact inr c,
induction x with b c, apply jglue, esimp,
induction x with a bc, induction bc with b c,
apply ap inl, apply jglue, apply jglue, induction x with b c,
let H := apdo (λ x, jglue x c) (jglue a b), esimp at H, esimp,
let H' := transpose (square_of_pathover H), esimp at H',
rewrite ap_constant at H', apply eq_pathover,
krewrite [elim_glue, ap_constant], esimp,
apply square_of_eq, apply concat, exact eq_of_square H',
rewrite [con_idp, idp_con],
end
private definition assoc_right_inv (x : join A (join B C)) : protected definition switch_equiv (A B C : Type) :
assoc_fun (assoc_inv x) = x := join (join A B) C ≃ join (join C B) A :=
begin by apply equiv.MK; do 2 apply join.switch_involutive
induction x with a bc, reflexivity,
induction bc with b c, reflexivity, reflexivity,
induction x with b c, esimp, apply eq_pathover,
apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
apply concat, apply ap (ap _), unfold assoc_inv, apply elim_glue, esimp,
krewrite elim_glue,
induction x with a bc, induction bc with b c, esimp,
{ apply eq_pathover, apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite elim_glue,
apply concat, apply !(ap_compose' (pushout.elim _ _ _))⁻¹,
esimp, krewrite [elim_glue, ap_id],
},
{ esimp, apply eq_pathover, apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite elim_glue,
esimp[jglue], apply concat, apply (refl (ap _ (glue (inl a, c)))),
esimp, krewrite [elim_glue, ap_id],
},
{ esimp, induction x with b c, esimp,
apply eq_pathover,
},
end
exit
protected definition assoc (A B C : Type) : protected definition assoc (A B C : Type) :
join (join A B) C ≃ join A (join B C) := join (join A B) C ≃ join A (join B C) :=
begin calc join (join A B) C ≃ join (join C B) A : join.switch_equiv
fapply equiv.MK, ... ≃ join A (join C B) : join.symm
{ }, ... ≃ join A (join B C) : join.symm
{
},
end
check elim_glue
check pushout.elim
end join end join