feat(hott/homotopy): add commutativity proof for join

This commit is contained in:
Jakob von Raumer 2015-10-15 22:10:19 +01:00 committed by Leonardo de Moura
parent eea219e33f
commit 149e5fff9f

View file

@ -8,7 +8,7 @@ Declaration of a join as a special case of a pushout
import hit.pushout .susp import hit.pushout .susp
open eq prod equiv pushout is_trunc bool open eq function prod equiv pushout is_trunc bool
namespace join namespace join
@ -60,55 +60,102 @@ namespace join
apply square_of_eq_top, rewrite idp_con, apply !con.right_inv⁻¹, apply square_of_eq_top, rewrite idp_con, apply !con.right_inv⁻¹,
end end
set_option unifier.max_steps 40000 protected definition swap (A B : Type) :
join A B → join B A :=
begin
intro x, induction x with a b, exact inr a, exact inl b,
apply !jglue⁻¹
end
protected definition swap_involutive (A B : Type) (x : join A B) :
join.swap B A (join.swap A B x) = x :=
begin
induction x with a b, do 2 reflexivity,
induction x with a b, esimp,
apply eq_pathover, rewrite ap_id,
apply hdeg_square, esimp[join.swap],
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite [elim_glue, ap_inv, elim_glue], apply inv_inv,
end
protected definition symm (A B : Type) : join A B ≃ join B A :=
begin
fapply equiv.MK, do 2 apply join.swap,
do 2 apply join.swap_involutive,
end
exit
section
parameters (A B C : Type)
private definition assoc_fun [reducible] :
join (join A B) C → join A (join B C) :=
begin
intro x, induction x with ab c, induction ab with a b,
exact inl a, exact inr (inl b),
induction x with a b, apply jglue, exact inr (inr c),
induction x with ab c, induction ab with a b, apply jglue,
apply ap inr, apply jglue, induction x with a b,
let H := apdo (jglue a) (jglue b c), esimp at H, esimp,
let H' := transpose (square_of_pathover H), esimp at H',
rewrite ap_constant at H', apply eq_pathover,
krewrite [elim_glue, ap_constant], esimp,
apply square_of_eq, apply concat, rotate 1, exact eq_of_square H',
rewrite [con_idp, idp_con],
end
private definition assoc_inv [reducible] :
join A (join B C) → join (join A B) C :=
begin
intro x, induction x with a bc, exact inl (inl a),
induction bc with b c, exact inl (inr b), exact inr c,
induction x with b c, apply jglue, esimp,
induction x with a bc, induction bc with b c,
apply ap inl, apply jglue, apply jglue, induction x with b c,
let H := apdo (λ x, jglue x c) (jglue a b), esimp at H, esimp,
let H' := transpose (square_of_pathover H), esimp at H',
rewrite ap_constant at H', apply eq_pathover,
krewrite [elim_glue, ap_constant], esimp,
apply square_of_eq, apply concat, exact eq_of_square H',
rewrite [con_idp, idp_con],
end
private definition assoc_right_inv (x : join A (join B C)) :
assoc_fun (assoc_inv x) = x :=
begin
induction x with a bc, reflexivity,
induction bc with b c, reflexivity, reflexivity,
induction x with b c, esimp, apply eq_pathover,
apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
apply concat, apply ap (ap _), unfold assoc_inv, apply elim_glue, esimp,
krewrite elim_glue,
induction x with a bc, induction bc with b c, esimp,
{ apply eq_pathover, apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite elim_glue,
apply concat, apply !(ap_compose' (pushout.elim _ _ _))⁻¹,
esimp, krewrite [elim_glue, ap_id],
},
{ esimp, apply eq_pathover, apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
krewrite elim_glue,
esimp[jglue], apply concat, apply (refl (ap _ (glue (inl a, c)))),
esimp, krewrite [elim_glue, ap_id],
},
{ esimp, induction x with b c, esimp,
apply eq_pathover,
},
end
exit
protected definition assoc (A B C : Type) : protected definition assoc (A B C : Type) :
join (join A B) C ≃ join A (join B C) := join (join A B) C ≃ join A (join B C) :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ intro x, induction x with ab c, induction ab with a b, { },
exact inl a, exact inr (inl b), {
induction x with a b, apply jglue, exact inr (inr c),
induction x with ab c, induction ab with a b, apply jglue,
apply ap inr, apply jglue, induction x with a b,
let H := apdo (jglue a) (jglue b c), esimp at H, esimp,
let H' := transpose (square_of_pathover H), esimp at H',
rewrite ap_constant at H', apply eq_pathover,
krewrite [elim_glue, ap_constant], esimp,
apply square_of_eq, apply concat, rotate 1, exact eq_of_square H',
rewrite [con_idp, idp_con],
},
{ intro x, induction x with a bc, exact inl (inl a),
induction bc with b c, exact inl (inr b), exact inr c,
induction x with b c, apply jglue, esimp,
induction x with a bc, induction bc with b c,
apply ap inl, apply jglue, apply jglue, induction x with b c,
let H := apdo (λ x, jglue x c) (jglue a b), esimp at H, esimp,
let H' := transpose (square_of_pathover H), esimp at H',
rewrite ap_constant at H', apply eq_pathover,
krewrite [elim_glue, ap_constant], esimp,
apply square_of_eq, apply concat, exact eq_of_square H',
rewrite [con_idp, idp_con],
},
{ intro x, induction x with a bc, reflexivity,
induction bc with b c, reflexivity, reflexivity,
induction x with b c, esimp, apply eq_pathover,
apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
apply concat, apply ap (ap _), apply elim_glue, esimp,
apply concat, apply elim_glue, esimp,
induction x with a bc, induction bc with b c, esimp,
apply eq_pathover, apply hdeg_square, esimp,
apply concat, apply ap_compose' (pushout.elim _ _ _),
apply concat, apply ap (ap _), krewrite elim_glue, reflexivity,
apply inverse, apply concat, apply ap_id,
apply inverse, apply concat, apply inverse,
apply ap_compose' (pushout.elim _ _ _), apply elim_glue,
esimp, apply eq_pathover, apply hdeg_square,
apply concat, apply ap_compose' (pushout.elim _ _ _),
apply concat, apply ap (ap _), krewrite elim_glue, reflexivity,
apply inverse, apply concat, apply ap_id,
apply inverse, apply concat,
--apply ap_compose' (pushout.elim _ _ _),
}, },
end end
check elim_glue check elim_glue