feat(hott/homotopy): add commutativity proof for join
This commit is contained in:
parent
eea219e33f
commit
149e5fff9f
1 changed files with 93 additions and 46 deletions
|
@ -8,7 +8,7 @@ Declaration of a join as a special case of a pushout
|
|||
|
||||
import hit.pushout .susp
|
||||
|
||||
open eq prod equiv pushout is_trunc bool
|
||||
open eq function prod equiv pushout is_trunc bool
|
||||
|
||||
namespace join
|
||||
|
||||
|
@ -60,12 +60,38 @@ namespace join
|
|||
apply square_of_eq_top, rewrite idp_con, apply !con.right_inv⁻¹,
|
||||
end
|
||||
|
||||
set_option unifier.max_steps 40000
|
||||
protected definition assoc (A B C : Type) :
|
||||
join (join A B) C ≃ join A (join B C) :=
|
||||
protected definition swap (A B : Type) :
|
||||
join A B → join B A :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro x, induction x with ab c, induction ab with a b,
|
||||
intro x, induction x with a b, exact inr a, exact inl b,
|
||||
apply !jglue⁻¹
|
||||
end
|
||||
|
||||
protected definition swap_involutive (A B : Type) (x : join A B) :
|
||||
join.swap B A (join.swap A B x) = x :=
|
||||
begin
|
||||
induction x with a b, do 2 reflexivity,
|
||||
induction x with a b, esimp,
|
||||
apply eq_pathover, rewrite ap_id,
|
||||
apply hdeg_square, esimp[join.swap],
|
||||
apply concat, apply ap_compose' (pushout.elim _ _ _),
|
||||
krewrite [elim_glue, ap_inv, elim_glue], apply inv_inv,
|
||||
end
|
||||
|
||||
protected definition symm (A B : Type) : join A B ≃ join B A :=
|
||||
begin
|
||||
fapply equiv.MK, do 2 apply join.swap,
|
||||
do 2 apply join.swap_involutive,
|
||||
end
|
||||
|
||||
exit
|
||||
section
|
||||
parameters (A B C : Type)
|
||||
|
||||
private definition assoc_fun [reducible] :
|
||||
join (join A B) C → join A (join B C) :=
|
||||
begin
|
||||
intro x, induction x with ab c, induction ab with a b,
|
||||
exact inl a, exact inr (inl b),
|
||||
induction x with a b, apply jglue, exact inr (inr c),
|
||||
induction x with ab c, induction ab with a b, apply jglue,
|
||||
|
@ -76,8 +102,12 @@ namespace join
|
|||
krewrite [elim_glue, ap_constant], esimp,
|
||||
apply square_of_eq, apply concat, rotate 1, exact eq_of_square H',
|
||||
rewrite [con_idp, idp_con],
|
||||
},
|
||||
{ intro x, induction x with a bc, exact inl (inl a),
|
||||
end
|
||||
|
||||
private definition assoc_inv [reducible] :
|
||||
join A (join B C) → join (join A B) C :=
|
||||
begin
|
||||
intro x, induction x with a bc, exact inl (inl a),
|
||||
induction bc with b c, exact inl (inr b), exact inr c,
|
||||
induction x with b c, apply jglue, esimp,
|
||||
induction x with a bc, induction bc with b c,
|
||||
|
@ -88,27 +118,44 @@ namespace join
|
|||
krewrite [elim_glue, ap_constant], esimp,
|
||||
apply square_of_eq, apply concat, exact eq_of_square H',
|
||||
rewrite [con_idp, idp_con],
|
||||
},
|
||||
{ intro x, induction x with a bc, reflexivity,
|
||||
end
|
||||
|
||||
private definition assoc_right_inv (x : join A (join B C)) :
|
||||
assoc_fun (assoc_inv x) = x :=
|
||||
begin
|
||||
induction x with a bc, reflexivity,
|
||||
induction bc with b c, reflexivity, reflexivity,
|
||||
induction x with b c, esimp, apply eq_pathover,
|
||||
apply hdeg_square, esimp,
|
||||
apply concat, apply ap_compose' (pushout.elim _ _ _),
|
||||
apply concat, apply ap (ap _), apply elim_glue, esimp,
|
||||
apply concat, apply elim_glue, esimp,
|
||||
apply concat, apply ap (ap _), unfold assoc_inv, apply elim_glue, esimp,
|
||||
krewrite elim_glue,
|
||||
induction x with a bc, induction bc with b c, esimp,
|
||||
apply eq_pathover, apply hdeg_square, esimp,
|
||||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||||
apply concat, apply ap_compose' (pushout.elim _ _ _),
|
||||
apply concat, apply ap (ap _), krewrite elim_glue, reflexivity,
|
||||
apply inverse, apply concat, apply ap_id,
|
||||
apply inverse, apply concat, apply inverse,
|
||||
apply ap_compose' (pushout.elim _ _ _), apply elim_glue,
|
||||
esimp, apply eq_pathover, apply hdeg_square,
|
||||
krewrite elim_glue,
|
||||
apply concat, apply !(ap_compose' (pushout.elim _ _ _))⁻¹,
|
||||
esimp, krewrite [elim_glue, ap_id],
|
||||
},
|
||||
{ esimp, apply eq_pathover, apply hdeg_square, esimp,
|
||||
apply concat, apply ap_compose' (pushout.elim _ _ _),
|
||||
apply concat, apply ap (ap _), krewrite elim_glue, reflexivity,
|
||||
apply inverse, apply concat, apply ap_id,
|
||||
apply inverse, apply concat,
|
||||
--apply ap_compose' (pushout.elim _ _ _),
|
||||
krewrite elim_glue,
|
||||
esimp[jglue], apply concat, apply (refl (ap _ (glue (inl a, c)))),
|
||||
esimp, krewrite [elim_glue, ap_id],
|
||||
},
|
||||
{ esimp, induction x with b c, esimp,
|
||||
apply eq_pathover,
|
||||
},
|
||||
end
|
||||
|
||||
exit
|
||||
|
||||
protected definition assoc (A B C : Type) :
|
||||
join (join A B) C ≃ join A (join B C) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ },
|
||||
{
|
||||
},
|
||||
end
|
||||
check elim_glue
|
||||
|
|
Loading…
Reference in a new issue