feat(library/tactic/rewrite_tactic): add support for rewriting hypotheses

This commit is contained in:
Leonardo de Moura 2015-02-04 20:04:19 -08:00
parent 90eb5c8ca5
commit 14c72e82f6
2 changed files with 113 additions and 39 deletions

View file

@ -10,6 +10,7 @@ Author: Leonardo de Moura
#include "util/list_fn.h"
#include "util/sexpr/option_declarations.h"
#include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "kernel/replace_fn.h"
#include "kernel/for_each_fn.h"
#include "kernel/inductive/inductive.h"
@ -518,8 +519,10 @@ class rewrite_fn {
// rule, new_t
typedef optional<pair<expr, expr>> unify_result;
// When successful, the result is the pair (H, new_t) where (H : new_t = t)
unify_result unify_target(expr const & t, expr const & pre_elem) {
// When successful, the result is the pair (H, new_t) where
// (H : new_t = t) if is_goal == true
// (H : t = new_t) if is_goal == false
unify_result unify_target(expr const & t, expr const & pre_elem, bool is_goal) {
try {
expr rule = get_rewrite_rule(pre_elem);
auto rcs = m_elab(m_g, m_ngen.mk_child(), rule, false);
@ -565,25 +568,37 @@ class rewrite_fn {
m_subst = new_subst;
expr lhs = app_arg(app_fn(rule_type));
expr rhs = app_arg(rule_type);
if (symm) {
return unify_result(rule, lhs);
if (is_goal) {
if (symm) {
return unify_result(rule, lhs);
} else {
rule = mk_symm(*m_tc, rule);
return unify_result(rule, rhs);
}
} else {
rule = mk_symm(*m_tc, rule);
return unify_result(rule, rhs);
if (symm) {
rule = mk_symm(*m_tc, rule);
return unify_result(rule, lhs);
} else {
return unify_result(rule, rhs);
}
}
}
} catch (exception&) {}
return unify_result();
}
// target, new_target, H : represents the rewrite H : target = new_target
// target, new_target, H : represents the rewrite (H : target = new_target) for hypothesis and (H : new_target = target) for goals
typedef optional<std::tuple<expr, expr, expr>> find_result;
// Search for \c pattern in \c e. If \c t is a match, then try to unify the type of the rule
// in the rewrite step \c pre_elem with \c t.
// When successful, this method returns the target \c t, the fully elaborated rule \c r,
// and the new value \c new_t (i.e., the expression that will replace \c t).
find_result find_target(expr const & e, expr const & pattern, expr const & pre_elem) {
//
// \remark is_goal == true if \c e is the type of a goal. Otherwise, it is assumed to be the type
// of a hypothesis. This flag affects the equality proof built by this method.
find_result find_target(expr const & e, expr const & pattern, expr const & pre_elem, bool is_goal) {
find_result result;
for_each(e, [&](expr const & t, unsigned) {
if (result)
@ -595,7 +610,7 @@ class rewrite_fn {
if (assigned)
reset_subst();
if (r) {
if (auto p = unify_target(t, pre_elem)) {
if (auto p = unify_target(t, pre_elem, is_goal)) {
result = std::make_tuple(t, p->second, p->first);
return false;
}
@ -606,45 +621,81 @@ class rewrite_fn {
return result;
}
/** Given (a, b, P[a], Heq : b = a, occ), return (P[b], M : P[b], H : P[a])
where M is a metavariable application of a fresh metavariable, and H is a witness (based on M) for P[a].
bool process_rewrite_hypothesis(expr const & hyp, expr const & pre_elem, expr const & pattern, occurrence const & occ) {
expr Pa = mlocal_type(hyp);
bool is_goal = false;
if (auto it = find_target(Pa, pattern, pre_elem, is_goal)) {
expr a, Heq, b; // Heq is a proof of a = b
std::tie(a, b, Heq) = *it;
\remark occ is used to select which occurrences of a in P[a] will be replaced with b
bool has_dep_elim = inductive::has_dep_elim(m_env, get_eq_name());
unsigned vidx = has_dep_elim ? 1 : 0;
expr Px = replace_occurrences(Pa, a, occ, vidx);
expr Pb = instantiate(Px, vidx, b);
\remark the witness \c H is used using eq.rec
*/
std::tuple<expr, expr, expr> apply_rewrite(expr const & a, expr const & b, expr const & Pa, expr const & Heq, occurrence const & occ) {
bool has_dep_elim = inductive::has_dep_elim(m_env, get_eq_name());
unsigned vidx = has_dep_elim ? 1 : 0;
expr Px = replace_occurrences(Pa, a, occ, vidx);
expr Pb = instantiate(Px, vidx, b);
expr A = m_tc->infer(a).first;
level l1 = sort_level(m_tc->ensure_type(Pa).first);
level l2 = sort_level(m_tc->ensure_type(A).first);
expr M = m_g.mk_meta(m_ngen.next(), Pb);
expr H;
if (has_dep_elim) {
expr Haeqx = mk_app(mk_constant(get_eq_name(), {l1}), A, b, mk_var(0));
expr P = mk_lambda("x", A, mk_lambda("H", Haeqx, Px));
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, b, P, M, a, Heq});
} else {
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, b, mk_lambda("x", A, Px), M, a, Heq});
expr A = m_tc->infer(a).first;
level l1 = sort_level(m_tc->ensure_type(Pa).first);
level l2 = sort_level(m_tc->ensure_type(A).first);
expr H;
if (has_dep_elim) {
expr Haeqx = mk_app(mk_constant(get_eq_name(), {l1}), A, b, mk_var(0));
expr P = mk_lambda("x", A, mk_lambda("H", Haeqx, Px));
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, a, P, hyp, b, Heq});
} else {
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, a, mk_lambda("x", A, Px), hyp, b, Heq});
}
expr new_hyp = update_mlocal(hyp, Pb);
buffer<expr> new_hyps;
buffer<expr> args;
m_g.get_hyps(new_hyps);
for (expr & h : new_hyps) {
if (mlocal_name(h) == mlocal_name(hyp)) {
h = new_hyp;
args.push_back(H);
break;
} else {
args.push_back(h);
}
}
expr new_type = m_g.get_type();
expr new_mvar = mk_metavar(m_ngen.next(), Pi(new_hyps, new_type));
expr new_meta = mk_app(new_mvar, new_hyps);
goal new_g(new_meta, new_type);
expr val = m_g.abstract(mk_app(new_mvar, args));
m_subst.assign(m_g.get_name(), val);
update_goal(new_g);
return true;
}
return std::make_tuple(Pb, M, H);
}
bool process_rewrite_hypothesis(expr const & /*hyp*/, expr const & /*pre_elem*/, expr const & /*pattern*/, occurrence const & /*occ*/) {
// TODO(Leo)
return false;
}
bool process_rewrite_goal(expr const & pre_elem, expr const & pattern, occurrence const & occ) {
expr Pa = m_g.get_type();
if (auto it = find_target(Pa, pattern, pre_elem)) {
expr Pa = m_g.get_type();
bool is_goal = true;
if (auto it = find_target(Pa, pattern, pre_elem, is_goal)) {
expr a, Heq, b;
std::tie(a, b, Heq) = *it;
expr Pb, M, H;
std::tie(Pb, M, H) = apply_rewrite(a, b, Pa, Heq, occ);
// Given (a, b, P[a], Heq : b = a, occ), return (P[b], M : P[b], H : P[a])
// where M is a metavariable application of a fresh metavariable, and H is a witness (based on M) for P[a].
bool has_dep_elim = inductive::has_dep_elim(m_env, get_eq_name());
unsigned vidx = has_dep_elim ? 1 : 0;
expr Px = replace_occurrences(Pa, a, occ, vidx);
expr Pb = instantiate(Px, vidx, b);
expr A = m_tc->infer(a).first;
level l1 = sort_level(m_tc->ensure_type(Pa).first);
level l2 = sort_level(m_tc->ensure_type(A).first);
expr M = m_g.mk_meta(m_ngen.next(), Pb);
expr H;
if (has_dep_elim) {
expr Haeqx = mk_app(mk_constant(get_eq_name(), {l1}), A, b, mk_var(0));
expr P = mk_lambda("x", A, mk_lambda("H", Haeqx, Px));
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, b, P, M, a, Heq});
} else {
H = mk_app({mk_constant(get_eq_rec_name(), {l1, l2}), A, b, mk_lambda("x", A, Px), M, a, Heq});
}
goal new_g(M, Pb);
expr val = m_g.abstract(H);
m_subst.assign(m_g.get_name(), val);

View file

@ -0,0 +1,23 @@
import data.nat
open algebra
constant f {A : Type} : A → A → A
theorem test1 {A : Type} [s : comm_ring A] (a b c : A) (H : a + 0 = 0) : f a a = f 0 0 :=
begin
rewrite add_zero at H,
rewrite H
end
theorem test2 {A : Type} [s : comm_ring A] (a b c : A) (H : a + 0 = 0) : f a a = f 0 0 :=
begin
rewrite add_zero at *,
rewrite H
end
theorem test3 {A : Type} [s : comm_ring A] (a b c : A) (H : a + 0 = 0 + 0) : f a a = f 0 0 :=
begin
rewrite add_zero at H,
rewrite zero_add at H,
rewrite H
end