From 15cdd593c19a3aeeb9fcc35074c94c59e5d61a89 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Mon, 30 May 2016 14:24:15 -0400 Subject: [PATCH] feat(init.{equiv|ua}): remove duplicated theorem --- hott/init/equiv.hlean | 8 ++++++++ hott/init/ua.hlean | 18 ------------------ 2 files changed, 8 insertions(+), 18 deletions(-) diff --git a/hott/init/equiv.hlean b/hott/init/equiv.hlean index 2dda02d68..899d2429d 100644 --- a/hott/init/equiv.hlean +++ b/hott/init/equiv.hlean @@ -254,6 +254,10 @@ namespace is_equiv (p : x = y) : (is_equiv (transport P p)) := is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p) + -- a version where the transport is a cast. Note: A and B live in the same universe here. + definition is_equiv_cast [constructor] {A B : Type} (H : A = B) : is_equiv (cast H) := + is_equiv_tr (λX, X) H + section variables {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)] {g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a)) @@ -355,6 +359,10 @@ namespace equiv definition equiv_of_eq [constructor] {A B : Type} (p : A = B) : A ≃ B := equiv.mk (cast p) !is_equiv_tr + definition equiv_of_eq_refl [reducible] [unfold_full] (A : Type) + : equiv_of_eq (refl A) = equiv.refl A := + idp + definition eq_of_fn_eq_fn (f : A ≃ B) {x y : A} (q : f x = f y) : x = y := (left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y diff --git a/hott/init/ua.hlean b/hott/init/ua.hlean index 6e79f4f5c..d2dce74cd 100644 --- a/hott/init/ua.hlean +++ b/hott/init/ua.hlean @@ -10,24 +10,6 @@ prelude import .equiv open eq equiv is_equiv ---Ensure that the types compared are in the same universe -section - universe variable l - variables {A B : Type.{l}} - - definition is_equiv_cast [constructor] (H : A = B) : is_equiv (cast H) := - is_equiv_tr (λX, X) H - - definition equiv_of_eq [constructor] (H : A = B) : A ≃ B := - equiv.mk _ (is_equiv_cast H) - - definition equiv_of_eq_refl [reducible] [unfold_full] (A : Type) - : equiv_of_eq (refl A) = equiv.refl A := - idp - - -end - axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B) attribute univalence [instance]