refactor(library/logic/eq): use 'substvars' tactic
This commit is contained in:
parent
a8c9121d2e
commit
16d03c17ee
1 changed files with 10 additions and 10 deletions
|
@ -48,43 +48,43 @@ section
|
|||
variables {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E}
|
||||
|
||||
theorem congr_fun {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||||
H ▸ rfl
|
||||
by substvars
|
||||
|
||||
theorem congr_arg (f : A → B) (H : a = a') : f a = f a' :=
|
||||
H ▸ rfl
|
||||
by substvars
|
||||
|
||||
theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
||||
congr (congr_arg f Ha) Hb
|
||||
by substvars
|
||||
|
||||
theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
: f a b c = f a' b' c' :=
|
||||
congr (congr_arg2 f Ha Hb) Hc
|
||||
by substvars
|
||||
|
||||
theorem congr_arg4 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
||||
: f a b c d = f a' b' c' d' :=
|
||||
congr (congr_arg3 f Ha Hb Hc) Hd
|
||||
by substvars
|
||||
|
||||
theorem congr_arg5 (f : A → B → C → D → E → F)
|
||||
(Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
||||
: f a b c d e = f a' b' c' d' e' :=
|
||||
congr (congr_arg4 f Ha Hb Hc Hd) He
|
||||
by substvars
|
||||
|
||||
theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' :=
|
||||
Hf ▸ congr_arg2 f Ha Hb
|
||||
by substvars
|
||||
|
||||
theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c')
|
||||
: f a b c = f' a' b' c' :=
|
||||
Hf ▸ congr_arg3 f Ha Hb Hc
|
||||
by substvars
|
||||
|
||||
theorem congr4 (f f' : A → B → C → D → E)
|
||||
(Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
||||
: f a b c d = f' a' b' c' d' :=
|
||||
Hf ▸ congr_arg4 f Ha Hb Hc Hd
|
||||
by substvars
|
||||
|
||||
theorem congr5 (f f' : A → B → C → D → E → F)
|
||||
(Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
||||
: f a b c d e = f' a' b' c' d' e' :=
|
||||
Hf ▸ congr_arg5 f Ha Hb Hc Hd He
|
||||
by substvars
|
||||
end
|
||||
|
||||
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
||||
|
|
Loading…
Reference in a new issue