From 1796c2b992acdbbc0cf74d387ef26876b345dd76 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Tue, 11 Feb 2014 07:59:49 -0800 Subject: [PATCH] doc(examples/lean): proof of concept Signed-off-by: Leonardo de Moura --- examples/lean/setoid2.lean | 113 +++++++++++++++++++++++++++++++++++++ 1 file changed, 113 insertions(+) create mode 100644 examples/lean/setoid2.lean diff --git a/examples/lean/setoid2.lean b/examples/lean/setoid2.lean new file mode 100644 index 000000000..2f1b9abba --- /dev/null +++ b/examples/lean/setoid2.lean @@ -0,0 +1,113 @@ +-- Setoid example/test +import macros +import tactic + +variable first {A : (Type U)} {B : A → (Type U)} (p : sig x : A, B x) : A +variable second {A : (Type U)} {B : A → (Type U)} (p : sig x : A, B x) : B (first p) + +definition reflexive {A : (Type U)} (r : A → A → Bool) := ∀ x, r x x +definition symmetric {A : (Type U)} (r : A → A → Bool) := ∀ x y, r x y → r y x +definition transitive {A : (Type U)} (r : A → A → Bool) := ∀ x y z, r x y → r y z → r x z + +-- We need to create a universe smaller than U for defining setoids. +-- If we use (Type U) in the definition of setoid, then we will not be +-- able to write s1 = s2 given s1 s2 : setoid. +-- Writing the universes explicitily is really annoying. We should try to hide them. +universe M ≥ 1 +-- We currently don't have records. So, we use sigma types. +definition setoid := sig A : (Type M), sig eq : A → A → Bool, (reflexive eq) # (symmetric eq) # (transitive eq) +definition to_setoid (S : (Type M)) (eq : S → S → Bool) (Hrefl : reflexive eq) (Hsymm : symmetric eq) (Htrans : transitive eq) : setoid +:= pair S (pair eq (pair Hrefl (pair Hsymm Htrans))) + +-- The following definitions can be generated automatically. +definition carrier (s : setoid) +:= @first + (Type M) + (λ A : (Type M), sig eq : A → A → Bool, (reflexive eq) # (symmetric eq) # (transitive eq)) + s + +definition setoid_unfold1 (s : setoid) : sig eq : carrier s → carrier s → Bool, (reflexive eq) # (symmetric eq) # (transitive eq) +:= (@second (Type M) + (λ A : (Type M), sig eq : A → A → Bool, (reflexive eq) # (symmetric eq) # (transitive eq)) + s) + +definition S_eq {s : setoid} : carrier s → carrier s → Bool +:= (@first (carrier s → carrier s → Bool) + (λ eq : carrier s → carrier s → Bool, (reflexive eq) # (symmetric eq) # (transitive eq)) + (setoid_unfold1 s)) + +infix 50 ≈ : S_eq + +definition setoid_unfold2 (s : setoid) : (reflexive (@S_eq s)) # (symmetric (@S_eq s)) # (transitive (@S_eq s)) +:= (@second (carrier s → carrier s → Bool) + (λ eq : carrier s → carrier s → Bool, (reflexive eq) # (symmetric eq) # (transitive eq)) + (setoid_unfold1 s)) + +definition S_refl {s : setoid} : ∀ x : carrier s, x ≈ x +:= (@first (reflexive (@S_eq s)) + (λ x : reflexive (@S_eq s), (symmetric (@S_eq s)) # (transitive (@S_eq s))) + (setoid_unfold2 s)) + +definition setoid_unfold3 (s : setoid) : (symmetric (@S_eq s)) # (transitive (@S_eq s)) +:= (@second (reflexive (@S_eq s)) + (λ x : reflexive (@S_eq s), (symmetric (@S_eq s)) # (transitive (@S_eq s))) + (setoid_unfold2 s)) + +definition S_symm {s : setoid} {x y : carrier s} : x ≈ y → y ≈ x +:= (@first (symmetric (@S_eq s)) + (λ x : symmetric (@S_eq s), (transitive (@S_eq s))) + (setoid_unfold3 s)) + x y + +definition S_trans {s : setoid} {x y z : carrier s} : x ≈ y → y ≈ z → x ≈ z +:= (@second (symmetric (@S_eq s)) + (λ x : symmetric (@S_eq s), (transitive (@S_eq s))) + (setoid_unfold3 s)) + x y z + +set_opaque carrier true +set_opaque S_eq true +set_opaque S_refl true +set_opaque S_symm true +set_opaque S_trans true + +-- First example: the cross-product of two setoids is a setoid +definition product (s1 s2 : setoid) : setoid +:= to_setoid + (carrier s1 # carrier s2) + (λ x y, proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y) + (take x, and_intro (S_refl (proj1 x)) (S_refl (proj2 x))) + (take x y, + assume H : proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y, + and_intro (S_symm (and_eliml H)) (S_symm (and_elimr H))) + (take x y z, + assume H1 : proj1 x ≈ proj1 y ∧ proj2 x ≈ proj2 y, + assume H2 : proj1 y ≈ proj1 z ∧ proj2 y ≈ proj2 z, + and_intro (S_trans (and_eliml H1) (and_eliml H2)) + (S_trans (and_elimr H1) (and_elimr H2))) + +scope + -- We need to extend the elaborator to be able to write + -- p1 p2 : product s1 s2 + set_option pp::implicit true + check λ (s1 s2 : setoid) (p1 p2 : carrier (product s1 s2)), p1 ≈ p2 +end + +definition morphism (s1 s2 : setoid) := sig f : carrier s1 → carrier s2, ∀ x y, x ≈ y → f x ≈ f y +definition morphism_intro {s1 s2 : setoid} (f : carrier s1 → carrier s2) (H : ∀ x y, x ≈ y → f x ≈ f y) : morphism s1 s2 +:= pair f H +definition f {s1 s2 : setoid} (m : morphism s1 s2) : carrier s1 → carrier s2 +:= proj1 m +-- It would be nice to support (m.f x) as syntax sugar for (f m x) +definition is_compat {s1 s2 : setoid} (m : morphism s1 s2) {x y : carrier s1} : x ≈ y → f m x ≈ f m y +:= proj2 m x y + +-- Second example: the composition of two morphism is a morphism +definition compose {s1 s2 s3 : setoid} (m1 : morphism s1 s2) (m2 : morphism s2 s3) : morphism s1 s3 +:= morphism_intro + (λ x, f m2 (f m1 x)) + (take x y, assume Hxy : x ≈ y, + have Hfxy : f m1 x ≈ f m1 y, + from is_compat m1 Hxy, + show f m2 (f m1 x) ≈ f m2 (f m1 y), + from is_compat m2 Hfxy)