feat(library/data/rat/order): define abs and sign for rat before migrate
This commit is contained in:
parent
d41e055d1c
commit
17c07cdb02
1 changed files with 12 additions and 11 deletions
|
@ -40,8 +40,8 @@ calc
|
||||||
theorem nonneg_zero : nonneg zero := le.refl 0
|
theorem nonneg_zero : nonneg zero := le.refl 0
|
||||||
|
|
||||||
theorem nonneg_add (H1 : nonneg a) (H2 : nonneg b) : nonneg (add a b) :=
|
theorem nonneg_add (H1 : nonneg a) (H2 : nonneg b) : nonneg (add a b) :=
|
||||||
show num a * denom b + num b * denom a ≥ 0,
|
show num a * denom b + num b * denom a ≥ 0,
|
||||||
from add_nonneg
|
from add_nonneg
|
||||||
(mul_nonneg H1 (le_of_lt (denom_pos b)))
|
(mul_nonneg H1 (le_of_lt (denom_pos b)))
|
||||||
(mul_nonneg H2 (le_of_lt (denom_pos a)))
|
(mul_nonneg H2 (le_of_lt (denom_pos a)))
|
||||||
|
|
||||||
|
@ -60,7 +60,7 @@ theorem ne_zero_of_pos (H : pos a) : ¬ a ≡ zero :=
|
||||||
assume H', ne_of_gt H (num_eq_zero_of_equiv_zero H')
|
assume H', ne_of_gt H (num_eq_zero_of_equiv_zero H')
|
||||||
|
|
||||||
theorem pos_of_nonneg_of_ne_zero (H1 : nonneg a) (H2 : ¬ a ≡ zero) : pos a :=
|
theorem pos_of_nonneg_of_ne_zero (H1 : nonneg a) (H2 : ¬ a ≡ zero) : pos a :=
|
||||||
have H3 : num a ≠ 0,
|
have H3 : num a ≠ 0,
|
||||||
from assume H' : num a = 0, H2 (equiv_zero_of_num_eq_zero H'),
|
from assume H' : num a = 0, H2 (equiv_zero_of_num_eq_zero H'),
|
||||||
lt_of_le_of_ne H1 (ne.symm H3)
|
lt_of_le_of_ne H1 (ne.symm H3)
|
||||||
|
|
||||||
|
@ -77,7 +77,7 @@ local attribute prerat.setoid [instance]
|
||||||
|
|
||||||
/- The ordering on the rationals.
|
/- The ordering on the rationals.
|
||||||
|
|
||||||
The definitions of pos and nonneg are kept private, because they are only meant for internal
|
The definitions of pos and nonneg are kept private, because they are only meant for internal
|
||||||
use. Users should use a > 0 and a ≥ 0 instead of pos and nonneg.
|
use. Users should use a > 0 and a ≥ 0 instead of pos and nonneg.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
@ -109,7 +109,7 @@ quot.induction_on a @prerat.nonneg_total
|
||||||
private theorem nonneg_of_pos : pos a → nonneg a :=
|
private theorem nonneg_of_pos : pos a → nonneg a :=
|
||||||
quot.induction_on a @prerat.nonneg_of_pos
|
quot.induction_on a @prerat.nonneg_of_pos
|
||||||
|
|
||||||
private theorem ne_zero_of_pos : pos a → a ≠ 0 :=
|
private theorem ne_zero_of_pos : pos a → a ≠ 0 :=
|
||||||
quot.induction_on a (take u, assume H1 H2, prerat.ne_zero_of_pos H1 (quot.exact H2))
|
quot.induction_on a (take u, assume H1 H2, prerat.ne_zero_of_pos H1 (quot.exact H2))
|
||||||
|
|
||||||
private theorem pos_of_nonneg_of_ne_zero : nonneg a → ¬ a = 0 → pos a :=
|
private theorem pos_of_nonneg_of_ne_zero : nonneg a → ¬ a = 0 → pos a :=
|
||||||
|
@ -134,7 +134,7 @@ quot.rec_on_subsingleton a (take u, int.decidable_lt 0 (prerat.num u))
|
||||||
definition lt (a b : ℚ) : Prop := pos (b - a)
|
definition lt (a b : ℚ) : Prop := pos (b - a)
|
||||||
definition le (a b : ℚ) : Prop := nonneg (b - a)
|
definition le (a b : ℚ) : Prop := nonneg (b - a)
|
||||||
definition gt [reducible] (a b : ℚ) := lt b a
|
definition gt [reducible] (a b : ℚ) := lt b a
|
||||||
definition ge [reducible] (a b : ℚ) := le b a
|
definition ge [reducible] (a b : ℚ) := le b a
|
||||||
|
|
||||||
infix < := rat.lt
|
infix < := rat.lt
|
||||||
infix <= := rat.le
|
infix <= := rat.le
|
||||||
|
@ -143,7 +143,7 @@ infix >= := rat.ge
|
||||||
infix ≥ := rat.ge
|
infix ≥ := rat.ge
|
||||||
infix > := rat.gt
|
infix > := rat.gt
|
||||||
|
|
||||||
theorem le.refl (a : ℚ) : a ≤ a :=
|
theorem le.refl (a : ℚ) : a ≤ a :=
|
||||||
by rewrite [↑rat.le, sub_self]; apply nonneg_zero
|
by rewrite [↑rat.le, sub_self]; apply nonneg_zero
|
||||||
|
|
||||||
theorem le.trans (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
theorem le.trans (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
||||||
|
@ -166,7 +166,7 @@ or.elim (nonneg_total (b - a))
|
||||||
|
|
||||||
theorem lt_iff_le_and_ne (a b : ℚ) : a < b ↔ a ≤ b ∧ a ≠ b :=
|
theorem lt_iff_le_and_ne (a b : ℚ) : a < b ↔ a ≤ b ∧ a ≠ b :=
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume H : a < b,
|
(assume H : a < b,
|
||||||
have H1 : b - a ≠ 0, from ne_zero_of_pos H,
|
have H1 : b - a ≠ 0, from ne_zero_of_pos H,
|
||||||
have H2 : a ≠ b, from ne.symm (assume H', H1 (H' ▸ !sub_self)),
|
have H2 : a ≠ b, from ne.symm (assume H', H1 (H' ▸ !sub_self)),
|
||||||
and.intro (nonneg_of_pos H) H2)
|
and.intro (nonneg_of_pos H) H2)
|
||||||
|
@ -204,7 +204,7 @@ take a b, decidable_pos (b - a)
|
||||||
section
|
section
|
||||||
open [classes] algebra
|
open [classes] algebra
|
||||||
|
|
||||||
protected definition discrete_linear_ordered_field [instance] [reducible] :
|
protected definition discrete_linear_ordered_field [instance] [reducible] :
|
||||||
algebra.discrete_linear_ordered_field rat :=
|
algebra.discrete_linear_ordered_field rat :=
|
||||||
⦃algebra.discrete_linear_ordered_field,
|
⦃algebra.discrete_linear_ordered_field,
|
||||||
rat.discrete_field,
|
rat.discrete_field,
|
||||||
|
@ -219,7 +219,8 @@ section
|
||||||
mul_pos := @mul_pos,
|
mul_pos := @mul_pos,
|
||||||
decidable_lt := @decidable_lt⦄
|
decidable_lt := @decidable_lt⦄
|
||||||
|
|
||||||
-- migrate from algebra with rat
|
definition abs (n : rat) : rat := algebra.abs n
|
||||||
|
definition sign (n : rat) : rat := algebra.sign n
|
||||||
|
migrate from algebra with rat replacing abs → abs, sign → sign
|
||||||
end
|
end
|
||||||
|
|
||||||
end rat
|
end rat
|
||||||
|
|
Loading…
Reference in a new issue