fix(library/elaborator): in optimization for metavariable free terms

The optimization was incorrect if the term indirectly contained a metavariable.
It could happen if the term contained a free variable that was assigned in the context to a term containing a metavariable.

This commit also adds a new test that exposes the problem.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-22 18:03:08 -08:00
parent 8214c7add4
commit 17cce340f6
3 changed files with 37 additions and 1 deletions

View file

@ -1391,11 +1391,38 @@ class elaborator::imp {
push_new_eq_constraint(ctx, m, update_abstraction(pi, abst_domain(pi), m1), new_jst); push_new_eq_constraint(ctx, m, update_abstraction(pi, abst_domain(pi), m1), new_jst);
} }
/**
\brief Return true iff \c a has not metavar and no free
variable that is assigned to a term containing metavariables in
ctx.
*/
bool has_no_metavar(context const & ctx, expr const & a) {
if (has_metavar(a))
return false;
bool found = false;
for_each(a, [&](expr const & e, unsigned offset) {
if (found) return false; // stop the search
if (is_var(e)) {
unsigned vidx = var_idx(e);
if (vidx >= offset) {
vidx -= offset;
auto entry = find(ctx, vidx);
if (entry && entry->get_body() && has_metavar(*entry->get_body())) {
found = true;
return false;
}
}
}
return true;
});
return !found;
}
bool process_eq_convertible(context const & ctx, expr const & a, expr const & b, unification_constraint const & c) { bool process_eq_convertible(context const & ctx, expr const & a, expr const & b, unification_constraint const & c) {
bool eq = is_eq(c); bool eq = is_eq(c);
if (a == b) if (a == b)
return true; return true;
if (!has_metavar(a) && !has_metavar(b)) { if (has_no_metavar(ctx, a) && has_no_metavar(ctx, b)) {
if (m_type_inferer.is_convertible(a, b, ctx)) { if (m_type_inferer.is_convertible(a, b, ctx)) {
return true; return true;
} else { } else {

View file

@ -0,0 +1,4 @@
set_option pp::implicit true
check let P : Nat → Bool := λ x, x ≠ 0,
Q : ∀ x, P (x + 1) := λ x, Nat::succ_nz x
in Q

View file

@ -0,0 +1,5 @@
Set: pp::colors
Set: pp::unicode
Set: lean::pp::implicit
let P : → Bool := λ x : , @neq x 0, Q : ∀ x : , P (x + 1) := λ x : , Nat::succ_nz x in Q :
∀ x : , (λ x : , @neq x 0) (x + 1)