feat(library/simplifier): improve contextual simplifications
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
5ba2525eab
commit
180be5c4a2
3 changed files with 36 additions and 0 deletions
|
@ -61,6 +61,9 @@ class to_ceqs_fn {
|
||||||
} else if (is_neq(a)) {
|
} else if (is_neq(a)) {
|
||||||
return mk_singleton(update_app(a, 0, mk_eq_fn()),
|
return mk_singleton(update_app(a, 0, mk_eq_fn()),
|
||||||
mk_not_neq_elim_th(arg(a, 1), arg(a, 2), arg(a, 3), H));
|
mk_not_neq_elim_th(arg(a, 1), arg(a, 2), arg(a, 3), H));
|
||||||
|
} else if (is_or(a)) {
|
||||||
|
return apply(mk_and(mk_not(arg(a, 1)), mk_not(arg(a, 2))),
|
||||||
|
mk_not_or_elim_th(arg(a, 1), arg(a, 2), H));
|
||||||
} else {
|
} else {
|
||||||
expr new_e = mk_iff(a, False);
|
expr new_e = mk_iff(a, False);
|
||||||
expr new_H = mk_eqf_intro_th(a, H);
|
expr new_H = mk_eqf_intro_th(a, H);
|
||||||
|
|
16
tests/lean/simp16.lean
Normal file
16
tests/lean/simp16.lean
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
rewrite_set simple
|
||||||
|
add_rewrite and_truer and_truel and_falser and_falsel or_falsel : simple
|
||||||
|
(*
|
||||||
|
add_congr_theorem("simple", "and_congr")
|
||||||
|
add_congr_theorem("simple", "or_congr")
|
||||||
|
*)
|
||||||
|
|
||||||
|
variables a b c : Nat
|
||||||
|
|
||||||
|
(*
|
||||||
|
local t = parse_lean([[a = 1 ∧ ((¬ b = 0 ∨ c ≠ b) ∨ b + c > a)]])
|
||||||
|
local s, pr = simplify(t, "simple")
|
||||||
|
print(s)
|
||||||
|
print(pr)
|
||||||
|
print(get_environment():type_check(pr))
|
||||||
|
*)
|
17
tests/lean/simp16.lean.expected.out
Normal file
17
tests/lean/simp16.lean.expected.out
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
Set: pp::colors
|
||||||
|
Set: pp::unicode
|
||||||
|
Assumed: a
|
||||||
|
Assumed: b
|
||||||
|
Assumed: c
|
||||||
|
a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|
||||||
|
and_congr
|
||||||
|
(refl (a = 1))
|
||||||
|
(λ C::1 : a = 1,
|
||||||
|
trans (or_congr (or_congr (refl (¬ b = 0)) (λ C::2 : ¬ ¬ b = 0, congr2 (neq c) (not_not_elim C::2)))
|
||||||
|
(λ C::2 : ¬ (¬ b = 0 ∨ c ≠ 0),
|
||||||
|
congr (congr2 Nat::gt
|
||||||
|
(congr (congr2 Nat::add (not_not_elim (and_eliml (not_or_elim C::2))))
|
||||||
|
(not_neq_elim (and_elimr (not_or_elim C::2)))))
|
||||||
|
C::1))
|
||||||
|
(or_falsel (¬ b = 0 ∨ c ≠ 0)))
|
||||||
|
a = 1 ∧ ((¬ b = 0 ∨ c ≠ b) ∨ b + c > a) ↔ a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|
Loading…
Reference in a new issue