fix(tests/lean/simplifier_norm_num): adjust tests to recent changes
This commit is contained in:
parent
44a099f6f1
commit
182085b366
1 changed files with 38 additions and 37 deletions
|
@ -1,7 +1,7 @@
|
|||
import algebra.numeral algebra.field
|
||||
open algebra
|
||||
|
||||
namespace norm_num
|
||||
|
||||
namespace aux namespace norm_num
|
||||
universe l
|
||||
constants (A : Type.{l}) (A_comm_ring : comm_ring A)
|
||||
attribute A_comm_ring [instance]
|
||||
|
@ -9,26 +9,26 @@ attribute A_comm_ring [instance]
|
|||
set_option simplify.max_steps 5000000
|
||||
set_option simplify.top_down false
|
||||
|
||||
lemma bit0_add_bit0_helper [simp] (a b : A) : bit0 a + bit0 b = bit0 (a + b) := bit0_add_bit0_helper a b (a+b) rfl
|
||||
lemma add1_bit1_helper [simp] (a : A) : (bit1 a) + 1 = bit0 (a + 1) := add1_bit1_helper a (add1 a) rfl
|
||||
lemma bit1_add_one_helper [simp] (a : A) : bit1 a + 1 = (bit1 a) + 1 := bit1_add_one_helper a (add1 (bit1 a)) rfl
|
||||
lemma bit0_add_bit0_helper [simp] (a b : A) : bit0 a + bit0 b = bit0 (a + b) := norm_num.bit0_add_bit0_helper a b (a+b) rfl
|
||||
lemma add1_bit1_helper [simp] (a : A) : (bit1 a) + 1 = bit0 (a + 1) := norm_num.add1_bit1_helper a (norm_num.add1 a) rfl
|
||||
lemma bit1_add_one_helper [simp] (a : A) : bit1 a + 1 = (bit1 a) + 1 := norm_num.bit1_add_one_helper a (norm_num.add1 (bit1 a)) rfl
|
||||
|
||||
lemma bit1_add_bit0_helper [simp] (a b : A) : bit1 a + bit0 b = bit1 (a + b) := bit1_add_bit0_helper a b (a + b) rfl
|
||||
lemma bit1_add_bit1_helper [simp] (a b : A) : bit1 a + bit1 b = bit0 (a + b + 1) := bit1_add_bit1_helper a b (a + b) (a + b + 1) rfl rfl
|
||||
lemma bit0_add_bit1_helper [simp] (a b : A) : bit0 a + bit1 b = bit1 (a + b) := bit0_add_bit1_helper a b (a + b) rfl
|
||||
lemma one_add_bit1_helper [simp] (a : A) : 1 + bit1 a = bit1 a + 1 := one_add_bit1_helper a (bit1 a + 1) rfl
|
||||
lemma bit1_add_bit0_helper [simp] (a b : A) : bit1 a + bit0 b = bit1 (a + b) := norm_num.bit1_add_bit0_helper a b (a + b) rfl
|
||||
lemma bit1_add_bit1_helper [simp] (a b : A) : bit1 a + bit1 b = bit0 (a + b + 1) := norm_num.bit1_add_bit1_helper a b (a + b) (a + b + 1) rfl rfl
|
||||
lemma bit0_add_bit1_helper [simp] (a b : A) : bit0 a + bit1 b = bit1 (a + b) := norm_num.bit0_add_bit1_helper a b (a + b) rfl
|
||||
lemma one_add_bit1_helper [simp] (a : A) : 1 + bit1 a = bit1 a + 1 := norm_num.one_add_bit1_helper a (bit1 a + 1) rfl
|
||||
|
||||
lemma bin_zero_add [simp] (a : A) : 0 + a = a := bin_zero_add a
|
||||
lemma bin_add_zero [simp] (a : A) : a + 0 = a := bin_add_zero a
|
||||
lemma one_add_one [simp] : (1:A) + 1 = 2 := one_add_one
|
||||
lemma one_add_bit0 [simp] (a : A) : 1 + bit0 a = bit1 a := one_add_bit0 a
|
||||
lemma bit0_add_one [simp] (a : A) : bit0 a + 1 = bit1 a := bit0_add_one a
|
||||
lemma bin_zero_add [simp] (a : A) : 0 + a = a := norm_num.bin_zero_add a
|
||||
lemma bin_add_zero [simp] (a : A) : a + 0 = a := norm_num.bin_add_zero a
|
||||
lemma one_add_one [simp] : (1:A) + 1 = 2 := norm_num.one_add_one
|
||||
lemma one_add_bit0 [simp] (a : A) : 1 + bit0 a = bit1 a := norm_num.one_add_bit0 a
|
||||
lemma bit0_add_one [simp] (a : A) : bit0 a + 1 = bit1 a := norm_num.bit0_add_one a
|
||||
|
||||
lemma mul_bit0_helper0 [simp] (a b : A) : bit0 a * bit0 b = bit0 (bit0 a * b) := mul_bit0_helper (bit0 a) b (bit0 a * b) rfl
|
||||
lemma mul_bit0_helper1 [simp] (a b : A) : bit1 a * bit0 b = bit0 (bit1 a * b) := mul_bit0_helper (bit1 a) b (bit1 a * b) rfl
|
||||
lemma mul_bit0_helper0 [simp] (a b : A) : bit0 a * bit0 b = bit0 (bit0 a * b) := norm_num.mul_bit0_helper (bit0 a) b (bit0 a * b) rfl
|
||||
lemma mul_bit0_helper1 [simp] (a b : A) : bit1 a * bit0 b = bit0 (bit1 a * b) := norm_num.mul_bit0_helper (bit1 a) b (bit1 a * b) rfl
|
||||
|
||||
lemma mul_bit1_helper0 [simp] (a b : A) : bit0 a * bit1 b = bit0 (bit0 a * b) + bit0 a := mul_bit1_helper (bit0 a) b (bit0 a * b) (bit0 (bit0 a * b) + bit0 a) rfl rfl
|
||||
lemma mul_bit1_helper1 [simp] (a b : A) : bit1 a * bit1 b = bit0 (bit1 a * b) + bit1 a := mul_bit1_helper (bit1 a) b (bit1 a * b) (bit0 (bit1 a * b) + bit1 a) rfl rfl
|
||||
lemma mul_bit1_helper0 [simp] (a b : A) : bit0 a * bit1 b = bit0 (bit0 a * b) + bit0 a := norm_num.mul_bit1_helper (bit0 a) b (bit0 a * b) (bit0 (bit0 a * b) + bit0 a) rfl rfl
|
||||
lemma mul_bit1_helper1 [simp] (a b : A) : bit1 a * bit1 b = bit0 (bit1 a * b) + bit1 a := norm_num.mul_bit1_helper (bit1 a) b (bit1 a * b) (bit0 (bit1 a * b) + bit1 a) rfl rfl
|
||||
|
||||
lemma mul_zero [simp] (a : A) : a * 0 = 0 := mul_zero a
|
||||
lemma zero_mul [simp] (a : A) : 0 * a = 0 := zero_mul a
|
||||
|
@ -36,27 +36,28 @@ lemma mul_one [simp] (a : A) : a * 1 = a := mul_one a
|
|||
lemma one_mul [simp] (a : A) : 1 * a = a := one_mul a
|
||||
|
||||
end norm_num
|
||||
end aux
|
||||
|
||||
open norm_num
|
||||
open aux.norm_num
|
||||
|
||||
#simplify eq 0 (0:A) + 1
|
||||
#simplify eq 0 (1:A) + 0
|
||||
#simplify eq 0 (1:A) + 1
|
||||
#simplify eq 0 (0:A) + 2
|
||||
#simplify eq 0 (1:A) + 2
|
||||
#simplify eq 0 (2:A) + 1
|
||||
#simplify eq 0 (3:A) + 1
|
||||
#simplify eq 0 (2:A) + 2
|
||||
#simplify eq 0 (4:A) + 1
|
||||
#simplify eq 0 (3:A) + 2
|
||||
#simplify eq 0 (2:A) + 3
|
||||
#simplify eq 0 (0:A) + 6
|
||||
#simplify eq 0 (3:A) + 3
|
||||
#simplify eq 0 (4:A) + 2
|
||||
#simplify eq 0 (5:A) + 1
|
||||
#simplify eq 0 (4:A) + 3
|
||||
#simplify eq 0 (1:A) + 6
|
||||
#simplify eq 0 (6:A) + 1
|
||||
#simplify eq 0 (0:A) + 1
|
||||
#simplify eq 0 (1:A) + 0
|
||||
#simplify eq 0 (1:A) + 1
|
||||
#simplify eq 0 (0:A) + 2
|
||||
#simplify eq 0 (1:A) + 2
|
||||
#simplify eq 0 (2:A) + 1
|
||||
#simplify eq 0 (3:A) + 1
|
||||
#simplify eq 0 (2:A) + 2
|
||||
#simplify eq 0 (4:A) + 1
|
||||
#simplify eq 0 (3:A) + 2
|
||||
#simplify eq 0 (2:A) + 3
|
||||
#simplify eq 0 (0:A) + 6
|
||||
#simplify eq 0 (3:A) + 3
|
||||
#simplify eq 0 (4:A) + 2
|
||||
#simplify eq 0 (5:A) + 1
|
||||
#simplify eq 0 (4:A) + 3
|
||||
#simplify eq 0 (1:A) + 6
|
||||
#simplify eq 0 (6:A) + 1
|
||||
#simplify eq 0 (5:A) + 28
|
||||
#simplify eq 0 (0 : A) + (2 + 3) + 7
|
||||
#simplify eq 0 (70 : A) + (33 + 2)
|
||||
|
|
Loading…
Reference in a new issue