feat(library/unifier): consider whnf case-split on flex-rigid constraints whenever the rhs contains a local constant that is not in the lhs
This commit is contained in:
parent
a5698a55ec
commit
187661aa6a
6 changed files with 153 additions and 8 deletions
|
@ -264,13 +264,6 @@ static cnstr_group to_cnstr_group(unsigned d) {
|
||||||
return static_cast<cnstr_group>(d);
|
return static_cast<cnstr_group>(d);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Return true if all arguments of lhs are local constants */
|
|
||||||
static bool all_local(expr const & lhs) {
|
|
||||||
buffer<expr> margs;
|
|
||||||
get_app_args(lhs, margs);
|
|
||||||
return std::all_of(margs.begin(), margs.end(), [&](expr const & e) { return is_local(e); });
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \brief Convert choice constraint delay factor to cnstr_group */
|
/** \brief Convert choice constraint delay factor to cnstr_group */
|
||||||
cnstr_group get_choice_cnstr_group(constraint const & c) {
|
cnstr_group get_choice_cnstr_group(constraint const & c) {
|
||||||
lean_assert(is_choice_cnstr(c));
|
lean_assert(is_choice_cnstr(c));
|
||||||
|
@ -1677,6 +1670,31 @@ struct unifier_fn {
|
||||||
return none_expr();
|
return none_expr();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \brief When solving flex-rigid constraints lhs =?= rhs (lhs is of the form ?M a_1 ... a_n),
|
||||||
|
we consider an additional case-split where rhs is put in weak-head-normal-form when
|
||||||
|
|
||||||
|
1- Option unifier.computation is true
|
||||||
|
2- At least one a_i is not a local constant
|
||||||
|
3- rhs contains a local constant that is not equal to any a_i.
|
||||||
|
*/
|
||||||
|
bool use_flex_rigid_whnf_split(expr const & lhs, expr const & rhs) {
|
||||||
|
lean_assert(is_meta(lhs));
|
||||||
|
if (m_config.m_computation)
|
||||||
|
return true; // if unifier.computation is true, we always consider the additional whnf split
|
||||||
|
buffer<expr> locals;
|
||||||
|
expr const * it = &lhs;
|
||||||
|
while (is_app(*it)) {
|
||||||
|
expr const & arg = app_arg(*it);
|
||||||
|
if (!is_local(arg))
|
||||||
|
return true; // lhs contains non-local constant
|
||||||
|
locals.push_back(arg);
|
||||||
|
it = &(app_fn(*it));
|
||||||
|
}
|
||||||
|
if (!context_check(rhs, locals))
|
||||||
|
return true; // rhs contains local constant that is not in locals
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
/** \brief Process a flex rigid constraint */
|
/** \brief Process a flex rigid constraint */
|
||||||
bool process_flex_rigid(expr lhs, expr const & rhs, justification const & j, bool relax) {
|
bool process_flex_rigid(expr lhs, expr const & rhs, justification const & j, bool relax) {
|
||||||
lean_assert(is_meta(lhs));
|
lean_assert(is_meta(lhs));
|
||||||
|
@ -1705,7 +1723,7 @@ struct unifier_fn {
|
||||||
buffer<constraints> alts;
|
buffer<constraints> alts;
|
||||||
process_flex_rigid_core(lhs, rhs, j, relax, alts);
|
process_flex_rigid_core(lhs, rhs, j, relax, alts);
|
||||||
append_auxiliary_constraints(alts, to_list(aux.begin(), aux.end()));
|
append_auxiliary_constraints(alts, to_list(aux.begin(), aux.end()));
|
||||||
if (m_config.m_computation || !all_local(lhs)) {
|
if (use_flex_rigid_whnf_split(lhs, rhs)) {
|
||||||
expr rhs_whnf = whnf(rhs, j, relax, aux);
|
expr rhs_whnf = whnf(rhs, j, relax, aux);
|
||||||
if (rhs_whnf != rhs) {
|
if (rhs_whnf != rhs) {
|
||||||
if (is_meta(rhs_whnf)) {
|
if (is_meta(rhs_whnf)) {
|
||||||
|
|
42
tests/lean/run/cat.lean
Normal file
42
tests/lean/run/cat.lean
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
-- Author: Floris van Doorn
|
||||||
|
|
||||||
|
-- category
|
||||||
|
import logic.core.eq logic.core.connectives
|
||||||
|
import data.unit data.sigma data.prod
|
||||||
|
import struc.function
|
||||||
|
|
||||||
|
inductive category [class] (ob : Type) (mor : ob → ob → Type) : Type :=
|
||||||
|
mk : Π (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C)
|
||||||
|
(id : Π {A : ob}, mor A A),
|
||||||
|
(Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
|
||||||
|
comp h (comp g f) = comp (comp h g) f) →
|
||||||
|
(Π {A B : ob} {f : mor A B}, comp f id = f) →
|
||||||
|
(Π {A B : ob} {f : mor A B}, comp id f = f) →
|
||||||
|
category ob mor
|
||||||
|
|
||||||
|
namespace category
|
||||||
|
precedence `∘` : 60
|
||||||
|
|
||||||
|
section
|
||||||
|
parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor}
|
||||||
|
abbreviation compose := rec (λ comp id assoc idr idl, comp) Cat
|
||||||
|
abbreviation id := rec (λ comp id assoc idr idl, id) Cat
|
||||||
|
abbreviation ID (A : ob) := @id A
|
||||||
|
|
||||||
|
infixr `∘` := compose
|
||||||
|
|
||||||
|
theorem assoc : Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
|
||||||
|
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
|
||||||
|
rec (λ comp id assoc idr idl, assoc) Cat
|
||||||
|
|
||||||
|
theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f :=
|
||||||
|
rec (λ comp id assoc idr idl, idr) Cat
|
||||||
|
theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f :=
|
||||||
|
rec (λ comp id assoc idr idl, idl) Cat
|
||||||
|
|
||||||
|
theorem id_left2 {A B : ob} {f : mor A B} : id ∘ f = f :=
|
||||||
|
rec (λ comp id assoc idr idl, idl A B f) Cat
|
||||||
|
end
|
||||||
|
end category
|
19
tests/lean/run/impbug1.lean
Normal file
19
tests/lean/run/impbug1.lean
Normal file
|
@ -0,0 +1,19 @@
|
||||||
|
-- category
|
||||||
|
|
||||||
|
abbreviation Prop := Type.{0}
|
||||||
|
variable eq {A : Type} : A → A → Prop
|
||||||
|
infix `=`:50 := eq
|
||||||
|
|
||||||
|
inductive category (ob : Type) (mor : ob → ob → Type) : Type :=
|
||||||
|
mk : Π (id : Π (A : ob), mor A A),
|
||||||
|
(Π (A B : ob) (f : mor A A), id A = f) → category ob mor
|
||||||
|
|
||||||
|
abbreviation id (ob : Type) (mor : ob → ob → Type) (Cat : category ob mor) := category.rec (λ id idl, id) Cat
|
||||||
|
|
||||||
|
theorem id_left (ob : Type) (mor : ob → ob → Type) (Cat : category ob mor) (A : ob) (f : mor A A) :
|
||||||
|
@eq (mor A A) (id ob mor Cat A) f :=
|
||||||
|
@category.rec ob mor (λ (C : category ob mor), @eq (mor A A) (id ob mor C A) f)
|
||||||
|
(λ (id : Π (A : ob), mor A A)
|
||||||
|
(idl : Π (A : ob), _),
|
||||||
|
idl A A f)
|
||||||
|
Cat
|
21
tests/lean/run/impbug2.lean
Normal file
21
tests/lean/run/impbug2.lean
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
-- category
|
||||||
|
|
||||||
|
abbreviation Prop := Type.{0}
|
||||||
|
variable eq {A : Type} : A → A → Prop
|
||||||
|
infix `=`:50 := eq
|
||||||
|
|
||||||
|
inductive category (ob : Type) (mor : ob → ob → Type) : Type :=
|
||||||
|
mk : Π (id : Π (A : ob), mor A A),
|
||||||
|
(Π (A B : ob) (f : mor A A), id A = f) → category ob mor
|
||||||
|
|
||||||
|
abbreviation id (ob : Type) (mor : ob → ob → Type) (Cat : category ob mor) := category.rec (λ id idl, id) Cat
|
||||||
|
variable ob : Type.{1}
|
||||||
|
variable mor : ob → ob → Type.{1}
|
||||||
|
variable Cat : category ob mor
|
||||||
|
|
||||||
|
theorem id_left (A : ob) (f : mor A A) : @eq (mor A A) (id ob mor Cat A) f :=
|
||||||
|
@category.rec ob mor (λ (C : category ob mor), @eq (mor A A) (id ob mor C A) f)
|
||||||
|
(λ (id : Π (T : ob), mor T T)
|
||||||
|
(idl : Π (T : ob), _),
|
||||||
|
idl A A f)
|
||||||
|
Cat
|
22
tests/lean/run/impbug3.lean
Normal file
22
tests/lean/run/impbug3.lean
Normal file
|
@ -0,0 +1,22 @@
|
||||||
|
-- category
|
||||||
|
|
||||||
|
abbreviation Prop := Type.{0}
|
||||||
|
variable eq {A : Type} : A → A → Prop
|
||||||
|
infix `=`:50 := eq
|
||||||
|
|
||||||
|
variable ob : Type.{1}
|
||||||
|
variable mor : ob → ob → Type.{1}
|
||||||
|
|
||||||
|
inductive category : Type :=
|
||||||
|
mk : Π (id : Π (A : ob), mor A A),
|
||||||
|
(Π (A B : ob) (f : mor A A), id A = f) → category
|
||||||
|
|
||||||
|
abbreviation id (Cat : category) := category.rec (λ id idl, id) Cat
|
||||||
|
variable Cat : category
|
||||||
|
|
||||||
|
theorem id_left (A : ob) (f : mor A A) : @eq (mor A A) (id Cat A) f :=
|
||||||
|
@category.rec (λ (C : category), @eq (mor A A) (id C A) f)
|
||||||
|
(λ (id : Π (T : ob), mor T T)
|
||||||
|
(idl : Π (T : ob), _),
|
||||||
|
idl A A f)
|
||||||
|
Cat
|
23
tests/lean/run/impbug4.lean
Normal file
23
tests/lean/run/impbug4.lean
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
-- category
|
||||||
|
|
||||||
|
abbreviation Prop := Type.{0}
|
||||||
|
variable eq {A : Type} : A → A → Prop
|
||||||
|
infix `=`:50 := eq
|
||||||
|
|
||||||
|
variable ob : Type.{1}
|
||||||
|
variable mor : ob → ob → Type.{1}
|
||||||
|
|
||||||
|
inductive category : Type :=
|
||||||
|
mk : Π (id : Π (A : ob), mor A A),
|
||||||
|
(Π (A B : ob) (f : mor A A), id A = f) → category
|
||||||
|
|
||||||
|
abbreviation id (Cat : category) := category.rec (λ id idl, id) Cat
|
||||||
|
variable Cat : category
|
||||||
|
|
||||||
|
set_option unifier.computation true
|
||||||
|
print "-----------------"
|
||||||
|
theorem id_left (A : ob) (f : mor A A) : @eq (mor A A) (id Cat A) f :=
|
||||||
|
@category.rec
|
||||||
|
(λ (C : category), Π (A B : ob) (f : mor A A), @eq (mor A A) (id C A) f)
|
||||||
|
(λ id idl, idl)
|
||||||
|
Cat A A f
|
Loading…
Reference in a new issue