diff --git a/hott/algebra/category/functor.hlean b/hott/algebra/category/functor.hlean index bd7e7dcbe..d1c40587d 100644 --- a/hott/algebra/category/functor.hlean +++ b/hott/algebra/category/functor.hlean @@ -154,7 +154,7 @@ namespace functor by (cases F; apply functor_mk_eq'_idp) definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂) - : functor_eq' (ap to_fun_ob p) (!transport_compose⁻¹ ⬝ apd to_fun_hom p) = p := + : functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apd to_fun_hom p) = p := begin cases p, cases F₁, apply concat, rotate_left 1, apply functor_eq'_idp, diff --git a/hott/init/equiv.hlean b/hott/init/equiv.hlean index 638f9676d..6d94fed01 100644 --- a/hott/init/equiv.hlean +++ b/hott/init/equiv.hlean @@ -177,7 +177,7 @@ namespace is_equiv is_equiv_rect f P df (f x) = right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp ... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj - ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -transport_compose + ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose ... = df x : by rewrite (apd df (left_inv f x)) end @@ -295,7 +295,7 @@ namespace equiv equiv_rect f P df (f x) = right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp ... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj - ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -transport_compose + ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose ... = df x : by rewrite (apd df (left_inv f x)) diff --git a/hott/init/path.hlean b/hott/init/path.hlean index d9d122d8e..385f37682 100644 --- a/hott/init/path.hlean +++ b/hott/init/path.hlean @@ -509,8 +509,7 @@ namespace eq eq.rec_on r !idp_con⁻¹ -- Transporting in a pulled back fibration. - -- rename: tr_compose - definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) : + definition tr_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) : transport (P ∘ f) p z = transport P (ap f p) z := eq.rec_on p idp @@ -526,7 +525,7 @@ namespace eq apd10 (ap (λh : A → B, f ∘ h) p) a = ap f (apd10 p a) := eq.rec_on p idp - -- A special case of [transport_compose] which seems to come up a lot. + -- A special case of [tr_compose] which seems to come up a lot. definition tr_eq_cast_ap {P : A → Type} {x y} (p : x = y) (u : P x) : p ▸ u = cast (ap P p) u := eq.rec_on p idp diff --git a/hott/types/pi.hlean b/hott/types/pi.hlean index 6a23b1169..a5acee324 100644 --- a/hott/types/pi.hlean +++ b/hott/types/pi.hlean @@ -175,7 +175,7 @@ namespace pi (λ(a : A) (b' : B' (f0⁻¹ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))), begin intro h, apply eq_of_homotopy, intro a', esimp, - rewrite [adj f0 a',-transport_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)], + rewrite [adj f0 a',-tr_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)], apply apd end, begin diff --git a/hott/types/sigma.hlean b/hott/types/sigma.hlean index e871109bd..f7decb8d3 100644 --- a/hott/types/sigma.hlean +++ b/hott/types/sigma.hlean @@ -216,7 +216,7 @@ namespace sigma apply (sigma_eq (left_inv f a)), apply pathover_of_tr_eq, rewrite [▸*,adj f,-(fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹)), - ▸*,transport_compose B' f,tr_inv_tr,left_inv] + ▸*,tr_compose B' f,tr_inv_tr,left_inv] end definition sigma_equiv_sigma_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] @@ -237,7 +237,7 @@ namespace sigma -- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) -- : ap (sigma_functor f g) (sigma_eq p q) = -- sigma_eq (ap f p) - -- ((transport_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) := + -- ((tr_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) := -- by induction u; induction v; apply ap_sigma_functor_eq_dpair /- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/