feat(library/algebra/ordered_ring): improve performance using rewrite tactic
This commit is contained in:
parent
9c0375b6e2
commit
18ab9ce4e1
1 changed files with 185 additions and 93 deletions
|
@ -17,6 +17,9 @@ namespace algebra
|
||||||
|
|
||||||
variable {A : Type}
|
variable {A : Type}
|
||||||
|
|
||||||
|
definition absurd_a_lt_a {B : Type} {a : A} [s : strict_order A] (H : a < a) : B :=
|
||||||
|
absurd H (lt.irrefl a)
|
||||||
|
|
||||||
structure ordered_semiring [class] (A : Type)
|
structure ordered_semiring [class] (A : Type)
|
||||||
extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance
|
extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance
|
||||||
semiring A, ordered_cancel_comm_monoid A :=
|
semiring A, ordered_cancel_comm_monoid A :=
|
||||||
|
@ -44,16 +47,25 @@ section
|
||||||
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
||||||
|
|
||||||
theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 :=
|
theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 :=
|
||||||
|
begin
|
||||||
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
||||||
!zero_mul ▸ H
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 :=
|
theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 :=
|
||||||
|
begin
|
||||||
have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha,
|
have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha,
|
||||||
!mul_zero ▸ H
|
rewrite mul_zero at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 :=
|
theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 :=
|
||||||
|
begin
|
||||||
have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb,
|
||||||
!zero_mul ▸ H
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) :
|
theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) :
|
||||||
c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc
|
c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc
|
||||||
|
@ -69,16 +81,25 @@ section
|
||||||
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
|
||||||
|
|
||||||
theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 :=
|
theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 :=
|
||||||
|
begin
|
||||||
have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb,
|
have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb,
|
||||||
!zero_mul ▸ H
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 :=
|
theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 :=
|
||||||
|
begin
|
||||||
have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha,
|
have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha,
|
||||||
!mul_zero ▸ H
|
rewrite mul_zero at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 :=
|
theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 :=
|
||||||
|
begin
|
||||||
have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb,
|
have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb,
|
||||||
!zero_mul ▸ H
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
structure linear_ordered_semiring [class] (A : Type)
|
structure linear_ordered_semiring [class] (A : Type)
|
||||||
|
@ -133,26 +154,38 @@ structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A :
|
||||||
theorem ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A}
|
theorem ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A}
|
||||||
(Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b :=
|
(Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b :=
|
||||||
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
||||||
have H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1,
|
assert H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1,
|
||||||
iff.mp !sub_nonneg_iff_le (!mul_sub_left_distrib ▸ H2)
|
begin
|
||||||
|
rewrite mul_sub_left_distrib at H2,
|
||||||
|
exact (iff.mp !sub_nonneg_iff_le H2)
|
||||||
|
end
|
||||||
|
|
||||||
theorem ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A}
|
theorem ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A}
|
||||||
(Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c :=
|
(Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c :=
|
||||||
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
|
||||||
have H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc,
|
assert H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc,
|
||||||
iff.mp !sub_nonneg_iff_le (!mul_sub_right_distrib ▸ H2)
|
begin
|
||||||
|
rewrite mul_sub_right_distrib at H2,
|
||||||
|
exact (iff.mp !sub_nonneg_iff_le H2)
|
||||||
|
end
|
||||||
|
|
||||||
theorem ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A}
|
theorem ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A}
|
||||||
(Hab : a < b) (Hc : 0 < c) : c * a < c * b :=
|
(Hab : a < b) (Hc : 0 < c) : c * a < c * b :=
|
||||||
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
||||||
have H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1,
|
assert H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1,
|
||||||
iff.mp !sub_pos_iff_lt (!mul_sub_left_distrib ▸ H2)
|
begin
|
||||||
|
rewrite mul_sub_left_distrib at H2,
|
||||||
|
exact (iff.mp !sub_pos_iff_lt H2)
|
||||||
|
end
|
||||||
|
|
||||||
theorem ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A}
|
theorem ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A}
|
||||||
(Hab : a < b) (Hc : 0 < c) : a * c < b * c :=
|
(Hab : a < b) (Hc : 0 < c) : a * c < b * c :=
|
||||||
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
|
||||||
have H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc,
|
assert H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc,
|
||||||
iff.mp !sub_pos_iff_lt (!mul_sub_right_distrib ▸ H2)
|
begin
|
||||||
|
rewrite mul_sub_right_distrib at H2,
|
||||||
|
exact (iff.mp !sub_pos_iff_lt H2)
|
||||||
|
end
|
||||||
|
|
||||||
definition ordered_ring.to_ordered_semiring [instance] [coercion] [reducible] [s : ordered_ring A] :
|
definition ordered_ring.to_ordered_semiring [instance] [coercion] [reducible] [s : ordered_ring A] :
|
||||||
ordered_semiring A :=
|
ordered_semiring A :=
|
||||||
|
@ -174,33 +207,57 @@ section
|
||||||
|
|
||||||
theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b :=
|
theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b :=
|
||||||
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
||||||
have H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc',
|
assert H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc',
|
||||||
have H2 : -(c * b) ≤ -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1,
|
have H2 : -(c * b) ≤ -(c * a),
|
||||||
|
begin
|
||||||
|
rewrite [-*neg_mul_eq_neg_mul at H1],
|
||||||
|
exact H1
|
||||||
|
end,
|
||||||
iff.mp !neg_le_neg_iff_le H2
|
iff.mp !neg_le_neg_iff_le H2
|
||||||
|
|
||||||
theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c :=
|
theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c :=
|
||||||
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
|
||||||
have H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc',
|
assert H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc',
|
||||||
have H2 : -(b * c) ≤ -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1,
|
have H2 : -(b * c) ≤ -(a * c),
|
||||||
|
begin
|
||||||
|
rewrite [-*neg_mul_eq_mul_neg at H1],
|
||||||
|
exact H1
|
||||||
|
end,
|
||||||
iff.mp !neg_le_neg_iff_le H2
|
iff.mp !neg_le_neg_iff_le H2
|
||||||
|
|
||||||
theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b :=
|
theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b :=
|
||||||
!zero_mul ▸ mul_le_mul_of_nonpos_right Ha Hb
|
begin
|
||||||
|
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonpos_right Ha Hb,
|
||||||
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b :=
|
theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b :=
|
||||||
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
||||||
have H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc',
|
assert H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc',
|
||||||
have H2 : -(c * b) < -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1,
|
have H2 : -(c * b) < -(c * a),
|
||||||
|
begin
|
||||||
|
rewrite [-*neg_mul_eq_neg_mul at H1],
|
||||||
|
exact H1
|
||||||
|
end,
|
||||||
iff.mp !neg_lt_neg_iff_lt H2
|
iff.mp !neg_lt_neg_iff_lt H2
|
||||||
|
|
||||||
theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c :=
|
theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c :=
|
||||||
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
|
||||||
have H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc',
|
assert H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc',
|
||||||
have H2 : -(b * c) < -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1,
|
have H2 : -(b * c) < -(a * c),
|
||||||
|
begin
|
||||||
|
rewrite [-*neg_mul_eq_mul_neg at H1],
|
||||||
|
exact H1
|
||||||
|
end,
|
||||||
iff.mp !neg_lt_neg_iff_lt H2
|
iff.mp !neg_lt_neg_iff_lt H2
|
||||||
|
|
||||||
theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b :=
|
theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b :=
|
||||||
!zero_mul ▸ mul_lt_mul_of_neg_right Ha Hb
|
begin
|
||||||
|
have H : 0 * b < a * b, from mul_lt_mul_of_neg_right Ha Hb,
|
||||||
|
rewrite zero_mul at H,
|
||||||
|
exact H
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
|
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
|
||||||
|
@ -231,18 +288,35 @@ theorem linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_o
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume Ha : 0 < a,
|
(assume Ha : 0 < a,
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume Hb : 0 < b, absurd (H ▸ show 0 < a * b, from mul_pos Ha Hb) (lt.irrefl 0))
|
(assume Hb : 0 < b,
|
||||||
|
begin
|
||||||
|
have H1 : 0 < a * b, from mul_pos Ha Hb,
|
||||||
|
rewrite H at H1,
|
||||||
|
apply (absurd_a_lt_a H1)
|
||||||
|
end)
|
||||||
(assume Hb : 0 = b, or.inr (Hb⁻¹))
|
(assume Hb : 0 = b, or.inr (Hb⁻¹))
|
||||||
(assume Hb : 0 > b,
|
(assume Hb : 0 > b,
|
||||||
absurd (H ▸ show 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb) (lt.irrefl 0)))
|
begin
|
||||||
|
have H1 : 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb,
|
||||||
|
rewrite H at H1,
|
||||||
|
apply (absurd_a_lt_a H1)
|
||||||
|
end))
|
||||||
(assume Ha : 0 = a, or.inl (Ha⁻¹))
|
(assume Ha : 0 = a, or.inl (Ha⁻¹))
|
||||||
(assume Ha : 0 > a,
|
(assume Ha : 0 > a,
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume Hb : 0 < b,
|
(assume Hb : 0 < b,
|
||||||
absurd (H ▸ show 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb) (lt.irrefl 0))
|
begin
|
||||||
|
have H1 : 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb,
|
||||||
|
rewrite H at H1,
|
||||||
|
apply (absurd_a_lt_a H1)
|
||||||
|
end)
|
||||||
(assume Hb : 0 = b, or.inr (Hb⁻¹))
|
(assume Hb : 0 = b, or.inr (Hb⁻¹))
|
||||||
(assume Hb : 0 > b,
|
(assume Hb : 0 > b,
|
||||||
absurd (H ▸ show 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb) (lt.irrefl 0)))
|
begin
|
||||||
|
have H1 : 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb,
|
||||||
|
rewrite H at H1,
|
||||||
|
apply (absurd_a_lt_a H1)
|
||||||
|
end))
|
||||||
|
|
||||||
-- Linearity implies no zero divisors. Doesn't need commutativity.
|
-- Linearity implies no zero divisors. Doesn't need commutativity.
|
||||||
definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion] [reducible]
|
definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion] [reducible]
|
||||||
|
@ -271,17 +345,26 @@ section
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume Hb : 0 < b, or.inl (and.intro Ha Hb))
|
(assume Hb : 0 < b, or.inl (and.intro Ha Hb))
|
||||||
(assume Hb : 0 = b,
|
(assume Hb : 0 = b,
|
||||||
absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0))
|
begin
|
||||||
|
rewrite [-Hb at Hab, mul_zero at Hab],
|
||||||
|
apply (absurd_a_lt_a Hab)
|
||||||
|
end)
|
||||||
(assume Hb : b < 0,
|
(assume Hb : b < 0,
|
||||||
absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb))))
|
absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb))))
|
||||||
(assume Ha : 0 = a,
|
(assume Ha : 0 = a,
|
||||||
absurd (!zero_mul ▸ Ha⁻¹ ▸ Hab) (lt.irrefl 0))
|
begin
|
||||||
|
rewrite [-Ha at Hab, zero_mul at Hab],
|
||||||
|
apply (absurd_a_lt_a Hab)
|
||||||
|
end)
|
||||||
(assume Ha : a < 0,
|
(assume Ha : a < 0,
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume Hb : 0 < b,
|
(assume Hb : 0 < b,
|
||||||
absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb)))
|
absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb)))
|
||||||
(assume Hb : 0 = b,
|
(assume Hb : 0 = b,
|
||||||
absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0))
|
begin
|
||||||
|
rewrite [-Hb at Hab, mul_zero at Hab],
|
||||||
|
apply (absurd_a_lt_a Hab)
|
||||||
|
end)
|
||||||
(assume Hb : b < 0, or.inr (and.intro Ha Hb)))
|
(assume Hb : b < 0, or.inr (and.intro Ha Hb)))
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -312,31 +395,36 @@ section
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume H : a > 0,
|
(assume H : a > 0,
|
||||||
calc
|
calc
|
||||||
sign (sign a) = sign 1 : {sign_of_pos H}
|
sign (sign a) = sign 1 : by rewrite (sign_of_pos H)
|
||||||
... = 1 : sign_one
|
... = 1 : by rewrite sign_one
|
||||||
... = sign a : sign_of_pos H)
|
... = sign a : by rewrite (sign_of_pos H))
|
||||||
(assume H : 0 = a,
|
(assume H : 0 = a,
|
||||||
calc
|
calc
|
||||||
sign (sign a) = sign (sign 0) : H
|
sign (sign a) = sign (sign 0) : by rewrite H
|
||||||
... = sign 0 : sign_zero
|
... = sign 0 : by rewrite sign_zero at {1}
|
||||||
... = sign a : H)
|
... = sign a : by rewrite -H)
|
||||||
(assume H : a < 0,
|
(assume H : a < 0,
|
||||||
calc
|
calc
|
||||||
sign (sign a) = sign (-1) : {sign_of_neg H}
|
sign (sign a) = sign (-1) : by rewrite (sign_of_neg H)
|
||||||
... = -1 : sign_neg_one
|
... = -1 : by rewrite sign_neg_one
|
||||||
... = sign a : sign_of_neg H)
|
... = sign a : by rewrite (sign_of_neg H))
|
||||||
|
|
||||||
theorem pos_of_sign_eq_one (H : sign a = 1) : a > 0 :=
|
theorem pos_of_sign_eq_one (H : sign a = 1) : a > 0 :=
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume H1 : 0 < a, H1)
|
(assume H1 : 0 < a, H1)
|
||||||
(assume H1 : 0 = a, absurd (sign_zero⁻¹ ⬝ (H1⁻¹ ▸ H)) zero_ne_one)
|
(assume H1 : 0 = a,
|
||||||
|
begin
|
||||||
|
rewrite [-H1 at H, sign_zero at H],
|
||||||
|
apply (absurd H zero_ne_one)
|
||||||
|
end)
|
||||||
(assume H1 : 0 > a,
|
(assume H1 : 0 > a,
|
||||||
have H2 : -1 = 1, from (sign_of_neg H1)⁻¹ ⬝ H,
|
have H2 : -1 = 1, from (sign_of_neg H1)⁻¹ ⬝ H,
|
||||||
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
||||||
|
|
||||||
theorem eq_zero_of_sign_eq_zero (H : sign a = 0) : a = 0 :=
|
theorem eq_zero_of_sign_eq_zero (H : sign a = 0) : a = 0 :=
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume H1 : 0 < a, absurd (H⁻¹ ⬝ sign_of_pos H1) zero_ne_one)
|
(assume H1 : 0 < a,
|
||||||
|
absurd (H⁻¹ ⬝ sign_of_pos H1) zero_ne_one)
|
||||||
(assume H1 : 0 = a, H1⁻¹)
|
(assume H1 : 0 = a, H1⁻¹)
|
||||||
(assume H1 : 0 > a,
|
(assume H1 : 0 > a,
|
||||||
have H2 : 0 = -1, from H⁻¹ ⬝ sign_of_neg H1,
|
have H2 : 0 = -1, from H⁻¹ ⬝ sign_of_neg H1,
|
||||||
|
@ -349,7 +437,11 @@ section
|
||||||
have H2 : -1 = 1, from H⁻¹ ⬝ (sign_of_pos H1),
|
have H2 : -1 = 1, from H⁻¹ ⬝ (sign_of_pos H1),
|
||||||
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one)
|
||||||
(assume H1 : 0 = a,
|
(assume H1 : 0 = a,
|
||||||
have H2 : 0 = -1, from (H1 ▸ sign_zero)⁻¹ ⬝ H,
|
have H2 : 0 = -1,
|
||||||
|
begin
|
||||||
|
rewrite [-H1 at H, sign_zero at H],
|
||||||
|
exact H
|
||||||
|
end,
|
||||||
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
|
have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero,
|
||||||
absurd (H3⁻¹) zero_ne_one)
|
absurd (H3⁻¹) zero_ne_one)
|
||||||
(assume H1 : 0 > a, H1)
|
(assume H1 : 0 > a, H1)
|
||||||
|
@ -359,19 +451,19 @@ section
|
||||||
(assume H1 : 0 < a,
|
(assume H1 : 0 < a,
|
||||||
calc
|
calc
|
||||||
sign (-a) = -1 : sign_of_neg (neg_neg_of_pos H1)
|
sign (-a) = -1 : sign_of_neg (neg_neg_of_pos H1)
|
||||||
... = -(sign a) : sign_of_pos H1)
|
... = -(sign a) : by rewrite (sign_of_pos H1))
|
||||||
(assume H1 : 0 = a,
|
(assume H1 : 0 = a,
|
||||||
calc
|
calc
|
||||||
sign (-a) = sign (-0) : H1
|
sign (-a) = sign (-0) : by rewrite H1
|
||||||
... = sign 0 : neg_zero
|
... = sign 0 : by rewrite neg_zero
|
||||||
... = 0 : sign_zero
|
... = 0 : by rewrite sign_zero
|
||||||
... = -0 : neg_zero
|
... = -0 : by rewrite neg_zero
|
||||||
... = -(sign 0) : sign_zero
|
... = -(sign 0) : by rewrite sign_zero
|
||||||
... = -(sign a) : H1)
|
... = -(sign a) : by rewrite -H1)
|
||||||
(assume H1 : 0 > a,
|
(assume H1 : 0 > a,
|
||||||
calc
|
calc
|
||||||
sign (-a) = 1 : sign_of_pos (neg_pos_of_neg H1)
|
sign (-a) = 1 : sign_of_pos (neg_pos_of_neg H1)
|
||||||
... = -(-1) : neg_neg
|
... = -(-1) : by rewrite neg_neg
|
||||||
... = -(sign a) : sign_of_neg H1)
|
... = -(sign a) : sign_of_neg H1)
|
||||||
|
|
||||||
-- hopefully, will be quick with the simplifier
|
-- hopefully, will be quick with the simplifier
|
||||||
|
@ -382,40 +474,40 @@ section
|
||||||
(assume H1 : 0 < a,
|
(assume H1 : 0 < a,
|
||||||
calc
|
calc
|
||||||
abs a = a : abs_of_pos H1
|
abs a = a : abs_of_pos H1
|
||||||
... = 1 * a : one_mul
|
... = 1 * a : by rewrite one_mul
|
||||||
... = sign a * a : {(sign_of_pos H1)⁻¹})
|
... = sign a * a : by rewrite (sign_of_pos H1))
|
||||||
(assume H1 : 0 = a,
|
(assume H1 : 0 = a,
|
||||||
calc
|
calc
|
||||||
abs a = abs 0 : H1
|
abs a = abs 0 : by rewrite H1
|
||||||
... = 0 : abs_zero
|
... = 0 : by rewrite abs_zero
|
||||||
... = 0 * a : zero_mul
|
... = 0 * a : by rewrite zero_mul
|
||||||
... = sign 0 * a : sign_zero
|
... = sign 0 * a : by rewrite sign_zero
|
||||||
... = sign a * a : H1)
|
... = sign a * a : by rewrite H1)
|
||||||
(assume H1 : a < 0,
|
(assume H1 : a < 0,
|
||||||
calc
|
calc
|
||||||
abs a = -a : abs_of_neg H1
|
abs a = -a : abs_of_neg H1
|
||||||
... = -1 * a : neg_eq_neg_one_mul
|
... = -1 * a : by rewrite neg_eq_neg_one_mul
|
||||||
... = sign a * a : {(sign_of_neg H1)⁻¹})
|
... = sign a * a : by rewrite (sign_of_neg H1))
|
||||||
|
|
||||||
theorem eq_sign_mul_abs (a : A) : a = sign a * abs a :=
|
theorem eq_sign_mul_abs (a : A) : a = sign a * abs a :=
|
||||||
lt.by_cases
|
lt.by_cases
|
||||||
(assume H1 : 0 < a,
|
(assume H1 : 0 < a,
|
||||||
calc
|
calc
|
||||||
a = abs a : abs_of_pos H1
|
a = abs a : abs_of_pos H1
|
||||||
... = 1 * abs a : one_mul
|
... = 1 * abs a : by rewrite one_mul
|
||||||
... = sign a * abs a : {(sign_of_pos H1)⁻¹})
|
... = sign a * abs a : by rewrite (sign_of_pos H1))
|
||||||
(assume H1 : 0 = a,
|
(assume H1 : 0 = a,
|
||||||
calc
|
calc
|
||||||
a = 0 : H1
|
a = 0 : H1⁻¹
|
||||||
... = 0 * abs a : zero_mul
|
... = 0 * abs a : by rewrite zero_mul
|
||||||
... = sign 0 * abs a : sign_zero
|
... = sign 0 * abs a : by rewrite sign_zero
|
||||||
... = sign a * abs a : H1)
|
... = sign a * abs a : by rewrite H1)
|
||||||
(assume H1 : a < 0,
|
(assume H1 : a < 0,
|
||||||
calc
|
calc
|
||||||
a = -(-a) : neg_neg
|
a = -(-a) : by rewrite neg_neg
|
||||||
... = -abs a : {(abs_of_neg H1)⁻¹}
|
... = -abs a : by rewrite (abs_of_neg H1)
|
||||||
... = -1 * abs a : neg_eq_neg_one_mul
|
... = -1 * abs a : by rewrite neg_eq_neg_one_mul
|
||||||
... = sign a * abs a : {(sign_of_neg H1)⁻¹})
|
... = sign a * abs a : by rewrite (sign_of_neg H1))
|
||||||
|
|
||||||
theorem abs_dvd_iff_dvd (a b : A) : (abs a | b) ↔ (a | b) :=
|
theorem abs_dvd_iff_dvd (a b : A) : (abs a | b) ↔ (a | b) :=
|
||||||
abs.by_cases !iff.refl !neg_dvd_iff_dvd
|
abs.by_cases !iff.refl !neg_dvd_iff_dvd
|
||||||
|
@ -430,28 +522,28 @@ section
|
||||||
(assume H2 : 0 ≤ b,
|
(assume H2 : 0 ≤ b,
|
||||||
calc
|
calc
|
||||||
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg H1 H2)
|
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg H1 H2)
|
||||||
... = abs a * b : {(abs_of_nonneg H1)⁻¹}
|
... = abs a * b : by rewrite (abs_of_nonneg H1)
|
||||||
... = abs a * abs b : {(abs_of_nonneg H2)⁻¹})
|
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
|
||||||
(assume H2 : b ≤ 0,
|
(assume H2 : b ≤ 0,
|
||||||
calc
|
calc
|
||||||
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonneg_of_nonpos H1 H2)
|
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonneg_of_nonpos H1 H2)
|
||||||
... = a * -b : neg_mul_eq_mul_neg
|
... = a * -b : by rewrite neg_mul_eq_mul_neg
|
||||||
... = abs a * -b : {(abs_of_nonneg H1)⁻¹}
|
... = abs a * -b : by rewrite (abs_of_nonneg H1)
|
||||||
... = abs a * abs b : {(abs_of_nonpos H2)⁻¹}))
|
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
|
||||||
(assume H1 : a ≤ 0,
|
(assume H1 : a ≤ 0,
|
||||||
or.elim (le.total 0 b)
|
or.elim (le.total 0 b)
|
||||||
(assume H2 : 0 ≤ b,
|
(assume H2 : 0 ≤ b,
|
||||||
calc
|
calc
|
||||||
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonpos_of_nonneg H1 H2)
|
abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonpos_of_nonneg H1 H2)
|
||||||
... = -a * b : neg_mul_eq_neg_mul
|
... = -a * b : by rewrite neg_mul_eq_neg_mul
|
||||||
... = abs a * b : {(abs_of_nonpos H1)⁻¹}
|
... = abs a * b : by rewrite (abs_of_nonpos H1)
|
||||||
... = abs a * abs b : {(abs_of_nonneg H2)⁻¹})
|
... = abs a * abs b : by rewrite (abs_of_nonneg H2))
|
||||||
(assume H2 : b ≤ 0,
|
(assume H2 : b ≤ 0,
|
||||||
calc
|
calc
|
||||||
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg_of_nonpos_of_nonpos H1 H2)
|
abs (a * b) = a * b : abs_of_nonneg (mul_nonneg_of_nonpos_of_nonpos H1 H2)
|
||||||
... = -a * -b : neg_mul_neg
|
... = -a * -b : by rewrite neg_mul_neg
|
||||||
... = abs a * -b : {(abs_of_nonpos H1)⁻¹}
|
... = abs a * -b : by rewrite (abs_of_nonpos H1)
|
||||||
... = abs a * abs b : {(abs_of_nonpos H2)⁻¹}))
|
... = abs a * abs b : by rewrite (abs_of_nonpos H2)))
|
||||||
|
|
||||||
theorem abs_mul_self (a : A) : abs a * abs a = a * a :=
|
theorem abs_mul_self (a : A) : abs a * abs a = a * a :=
|
||||||
abs.by_cases rfl !neg_mul_neg
|
abs.by_cases rfl !neg_mul_neg
|
||||||
|
|
Loading…
Reference in a new issue