diff --git a/library/hott/funext_from_ua.lean b/library/hott/funext_from_ua.lean index 7e9b2094e..efd0cf207 100644 --- a/library/hott/funext_from_ua.lean +++ b/library/hott/funext_from_ua.lean @@ -67,91 +67,83 @@ context protected definition diagonal [reducible] (B : Type) : Type := Σ xy : B × B, pr₁ xy ≈ pr₂ xy - protected definition isequiv_src_compose {A B C : Type} + protected definition isequiv_src_compose {A B : Type} : @IsEquiv (A → diagonal B) (A → B) - (compose (pr₁ ∘ dpr1)) - := @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1) + (compose (pr₁ ∘ dpr1)) := + @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1) (IsEquiv.adjointify (pr₁ ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) - protected definition isequiv_tgt_compose {A B C : Type} + protected definition isequiv_tgt_compose {A B : Type} : @IsEquiv (A → diagonal B) (A → B) - (compose (pr₂ ∘ dpr1)) - := @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1) + (compose (pr₂ ∘ dpr1)) := + @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1) (IsEquiv.adjointify (pr2 ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) - theorem ua_implies_funext_nondep {A B : Type.{l+1}} - : Π {f g : A → B}, f ∼ g → f ≈ g - := (λ (f g : A → B) (p : f ∼ g), - let d := λ (x : A), dpair (f x , f x) idp in - let e := λ (x : A), dpair (f x , g x) (p x) in - let precomp1 := compose (pr₁ ∘ dpr1) in - have equiv1 [visible] : IsEquiv precomp1, - from @isequiv_src_compose A B (diagonal B), - have equiv2 [visible] : Π x y, IsEquiv (ap precomp1), - from IsEquiv.ap_closed precomp1, - have H' : Π (x y : A → diagonal B), - pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y, - from (λ x y, IsEquiv.inv (ap precomp1)), - have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e, - from idp, - have eq0 : d ≈ e, - from H' d e eq2, - have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e, - from ap _ eq0, - eq1 - ) + theorem ua_implies_funext_nondep {A : Type} {B : Type.{l+1}} + : Π {f g : A → B}, f ∼ g → f ≈ g := + (λ (f g : A → B) (p : f ∼ g), + let d := λ (x : A), dpair (f x , f x) idp in + let e := λ (x : A), dpair (f x , g x) (p x) in + let precomp1 := compose (pr₁ ∘ dpr1) in + have equiv1 [visible] : IsEquiv precomp1, + from @isequiv_src_compose A B, + have equiv2 [visible] : Π x y, IsEquiv (ap precomp1), + from IsEquiv.ap_closed precomp1, + have H' : Π (x y : A → diagonal B), + pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y, + from (λ x y, IsEquiv.inv (ap precomp1)), + have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e, + from idp, + have eq0 : d ≈ e, + from H' d e eq2, + have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e, + from ap _ eq0, + eq1 + ) end context - universe variables l k - parameters {ua1 : ua_type.{l+1}} {ua2 : ua_type.{l+2}} - --parameters {ua1 ua2 : ua_type} + universe variables l + parameters {ua2 : ua_type.{l+2}} {ua3 : ua_type.{l+3}} -- Now we use this to prove weak funext, which as we know -- implies (with dependent eta) also the strong dependent funext. - set_option pp.universes true - check @ua_implies_funext_nondep - check @weak_funext_implies_funext - check @ua_type - definition lift : Type.{l+1} → Type.{l+2} := sorry - - theorem ua_implies_weak_funext : weak_funext - := (λ (A : Type.{l+1}) (P : A → Type.{l+1}) allcontr, - have liftA : Type.{l+2}, - from lift A, - let U := (λ (x : A), unit) in - have pequiv : Πx, P x ≃ U x, - from (λ x, @equiv_contr_unit(P x) (allcontr x)), - have psim : Πx, P x ≈ U x, - from (λ x, @IsEquiv.inv _ _ - (@equiv_path (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)), - have p : P ≈ U, - from @ua_implies_funext_nondep.{l} ua1 A Type.{l+1} P U psim, - have tU' : is_contr (A → unit), - from is_contr.mk (λ x, ⋆) - (λ f, @ua_implies_funext_nondep ua1 _ _ _ _ - (λ x, unit.rec_on (f x) idp)), - have tU : is_contr (Πx, U x), - from tU', - have tlast : is_contr (Πx, P x), - from path.transport _ (p⁻¹) tU, - tlast - ) + theorem ua_implies_weak_funext : weak_funext.{l} := + (λ (A : Type.{l+1}) (P : A → Type.{l+2}) allcontr, + let U := (λ (x : A), unit) in + have pequiv : Π (x : A), P x ≃ U x, + from (λ x, @equiv_contr_unit(P x) (allcontr x)), + have psim : Π (x : A), P x ≈ U x, + from (λ x, @IsEquiv.inv _ _ + (@equiv_path (P x) (U x)) (ua2 (P x) (U x)) (pequiv x)), + have p : P ≈ U, + from @ua_implies_funext_nondep.{l+2 l+1} ua3 A Type.{l+2} P U psim, + have tU' : is_contr (A → unit), + from is_contr.mk (λ x, ⋆) + (λ f, @ua_implies_funext_nondep ua2 A unit (λ x, ⋆) f + (λ x, unit.rec_on (f x) idp)), + have tU : is_contr (Π x, U x), + from tU', + have tlast : is_contr (Πx, P x), + from path.transport _ (p⁻¹) tU, + tlast + ) end +exit -- In the following we will proof function extensionality using the univalence axiom -- TODO: check out why I have to generalize on A and P here -definition ua_implies_funext_type {ua : ua_type.{1}} : @funext_type := - (λ A P, weak_funext_implies_funext (@ua_implies_weak_funext ua)) +definition ua_implies_funext_type {ua : ua_type} : @funext_type := + (λ A P, weak_funext_implies_funext (@ua_implies_visible]weak_funext ua))