fix(tests/lean/run): adjust tests

This commit is contained in:
Leonardo de Moura 2015-11-20 16:46:10 -08:00
parent 5a98a2538c
commit 1a4068878e
9 changed files with 3 additions and 38 deletions

View file

@ -21,10 +21,9 @@ check g (functor.to_fun f) 0
check g f 0 check g f 0
definition id (A : Type) (a : A) := a
constant S : struct constant S : struct
constant a : S constant a : S
check id (struct.to_sort S) a check @id (struct.to_sort S) a
check id S a check @id S a

View file

@ -9,8 +9,6 @@ by contradiction
example : ∀ (a b : nat), (0:nat) = 1 → a = b := example : ∀ (a b : nat), (0:nat) = 1 → a = b :=
by contradiction by contradiction
definition id {A : Type} (a : A) := a
example : ∀ (a b : nat), id false → a = b := example : ∀ (a b : nat), id false → a = b :=
by contradiction by contradiction

View file

@ -1,6 +1,6 @@
import logic data.nat.sub algebra.relation data.prod import logic data.nat.sub algebra.relation data.prod
open nat relation relation.iff_ops prod open nat relation prod
open decidable open decidable
open eq.ops open eq.ops

View file

@ -1,23 +0,0 @@
import logic algebra.relation
open relation
namespace is_equivalence
inductive cls {T : Type} (R : T → T → Prop) : Prop :=
mk : is_reflexive R → is_symmetric R → is_transitive R → cls R
end is_equivalence
theorem and_inhabited_left {a : Prop} (b : Prop) (Ha : a) : a ∧ b ↔ b :=
iff.intro (take Hab, and.elim_right Hab) (take Hb, and.intro Ha Hb)
theorem test (a b c : Prop) (P : Prop → Prop) (H1 : a ↔ b) (H2 : c ∧ a) : c ∧ b :=
iff.subst H1 H2
theorem test2 (Q R S : Prop) (H3 : R ↔ Q) (H1 : S) : Q ↔ (S ∧ Q) :=
iff.symm (and_inhabited_left Q H1)
theorem test3 (Q R S : Prop) (H3 : R ↔ Q) (H1 : S) : R ↔ (S ∧ Q) :=
iff.subst (test2 Q R S H3 H1) H3
theorem test4 (Q R S : Prop) (H3 : R ↔ Q) (H1 : S) : R ↔ (S ∧ Q) :=
iff.subst (iff.symm (and_inhabited_left Q H1)) H3

View file

@ -2,9 +2,7 @@ import data.nat
section foo section foo
variable A : Type variable A : Type
definition id (a : A) := a
variable a : nat variable a : nat
check _root_.id nat a
end foo end foo
namespace n1 namespace n1

View file

@ -1,7 +1,6 @@
import logic import logic
open tactic (renaming id->id_tac) open tactic (renaming id->id_tac)
definition id {A : Type} (a : A) := a
theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A
:= by unfold id; assumption := by unfold id; assumption

View file

@ -1,8 +1,6 @@
import logic import logic
open tactic (renaming id->id_tac) open tactic (renaming id->id_tac)
definition id {A : Type} (a : A) := a
infixl `;`:15 := tactic.and_then infixl `;`:15 := tactic.and_then
theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A

View file

@ -1,8 +1,6 @@
import logic import logic
open tactic (renaming id->id_tac) open tactic (renaming id->id_tac)
definition id {A : Type} (a : A) := a
theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A
:= by unfold id; assumption := by unfold id; assumption

View file

@ -1,7 +1,5 @@
variable {A : Type} variable {A : Type}
definition id (a : A) := a
check @id check @id
inductive list := inductive list :=