test(tests/lean/run): define below_rec_on (aka brec_on) for vectors
This commit is contained in:
parent
d25e74b921
commit
1b6e40d3d6
1 changed files with 30 additions and 2 deletions
|
@ -1,5 +1,5 @@
|
|||
import logic data.nat.basic
|
||||
open nat
|
||||
import logic data.nat.basic data.prod data.unit
|
||||
open nat prod
|
||||
|
||||
inductive vector (A : Type) : nat → Type :=
|
||||
vnil : vector A zero,
|
||||
|
@ -17,4 +17,32 @@ namespace vector
|
|||
begin
|
||||
intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption,
|
||||
end
|
||||
|
||||
section
|
||||
universe variables l₁ l₂
|
||||
variable {A : Type.{l₁}}
|
||||
variable C : Π (n : nat), vector A n → Type.{l₂}
|
||||
definition below {n : nat} (v : vector A n) :=
|
||||
rec_on v unit.{max 1 l₂} (λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (r₁ : Type.{max 1 l₂}), C n₁ v₁ × r₁)
|
||||
end
|
||||
|
||||
section
|
||||
universe variables l₁ l₂
|
||||
variable {A : Type.{l₁}}
|
||||
variable {C : Π (n : nat), vector A n → Type.{l₂}}
|
||||
definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), below C v → C n v) : C n v :=
|
||||
have general : C n v × below C v, from
|
||||
rec_on v
|
||||
(pair (H zero (vnil A) unit.star) unit.star)
|
||||
(λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (r₁ : C n₁ v₁ × below C v₁),
|
||||
have b : below C (vcons a₁ v₁), from
|
||||
r₁,
|
||||
have c : C (succ n₁) (vcons a₁ v₁), from
|
||||
H (succ n₁) (vcons a₁ v₁) b,
|
||||
pair c b),
|
||||
pr₁ general
|
||||
end
|
||||
|
||||
check brec_on
|
||||
|
||||
end vector
|
||||
|
|
Loading…
Reference in a new issue