refactor(library/data/list/perm): use improved 'obtain' to cleanup proof

This commit is contained in:
Leonardo de Moura 2015-06-08 11:53:02 -07:00
parent 6949e2d422
commit 1c5c79fbc1

View file

@ -312,20 +312,20 @@ perm_induction_on p'
have innil : a ∈ [], from mem_head_of_qeq e₁,
absurd innil !not_mem_nil)
(λ x t₁ t₂ p (r : ∀{a s₁ s₂}, t₁≈a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) a s₁ s₂ e₁ e₂,
obtain (s₁₁ s₁₂ : list A) (C₁ : s₁ = s₁₁ ++ s₁₂ ∧ x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁,
obtain (s₂₁ s₂₂ : list A) (C₂ : s₂ = s₂₁ ++ s₂₂ ∧ x::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂,
discr (and.elim_right C₁)
obtain (s₁₁ s₁₂ : list A) (C₁₁ : s₁ = s₁₁ ++ s₁₂) (C₁₂ : x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁,
obtain (s₂₁ s₂₂ : list A) (C₂₁ : s₂ = s₂₁ ++ s₂₂) (C₂₂ : x::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂,
discr C₁₂
(λ (s₁₁_eq : s₁₁ = []) (x_eq_a : x = a) (t₁_eq : t₁ = s₁₂),
assert s₁_p : s₁ ~ t₂, from calc
s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁
s₁ = s₁₁ ++ s₁₂ : C₁
... = t₁ : by rewrite [-t₁_eq, s₁₁_eq, append_nil_left]
... ~ t₂ : p,
discr (and.elim_right C₂)
discr C₂₂
(λ (s₂₁_eq : s₂₁ = []) (x_eq_a : x = a) (t₂_eq: t₂ = s₂₂),
proof calc
s₁ ~ t₂ : s₁_p
... = s₂₁ ++ s₂₂ : by rewrite [-t₂_eq, s₂₁_eq, append_nil_left]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)),
proof calc
@ -333,50 +333,50 @@ perm_induction_on p'
... = ts₂₁++(a::s₂₂) : t₂_eq
... ~ (a::ts₂₁)++s₂₂ : !perm_middle
... = s₂₁ ++ s₂₂ : by rewrite [-x_eq_a, -s₂₁_eq]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed))
(λ (ts₁₁ : list A) (s₁₁_eq : s₁₁ = x::ts₁₁) (t₁_eq : t₁ = ts₁₁++(a::s₁₂)),
assert t₁_qeq : t₁ ≈ a|(ts₁₁++s₁₂), by rewrite t₁_eq; exact !qeq_app,
assert s₁_eq : s₁ = x::(ts₁₁++s₁₂), from calc
s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁
s₁ = s₁₁ ++ s₁₂ : C₁
... = x::(ts₁₁++ s₁₂) : by rewrite s₁₁_eq,
discr (and.elim_right C₂)
discr C₂₂
(λ (s₂₁_eq : s₂₁ = []) (x_eq_a : x = a) (t₂_eq: t₂ = s₂₂),
proof calc
s₁ = a::(ts₁₁++s₁₂) : by rewrite [s₁_eq, x_eq_a]
... ~ ts₁₁++(a::s₁₂) : !perm_middle
... = t₁ : t₁_eq
... ~ t₂ : p
... = s₂ : by rewrite [t₂_eq, and.elim_left C₂, s₂₁_eq, append_nil_left]
... = s₂ : by rewrite [t₂_eq, C₂, s₂₁_eq, append_nil_left]
qed)
(λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)),
assert t₂_qeq : t₂ ≈ a|(ts₂₁++s₂₂), by rewrite t₂_eq; exact !qeq_app,
proof calc
s₁ = x::(ts₁₁++s₁₂) : s₁_eq
... ~ x::(ts₂₁++s₂₂) : skip x (r t₁_qeq t₂_qeq)
... = s₂ : by rewrite [-append_cons, -s₂₁_eq, and.elim_left C₂]
... = s₂ : by rewrite [-append_cons, -s₂₁_eq, C₂]
qed)))
(λ x y t₁ t₂ p (r : ∀{a s₁ s₂}, t₁≈a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) a s₁ s₂ e₁ e₂,
obtain (s₁₁ s₁₂ : list A) (C₁ : s₁ = s₁₁ ++ s₁₂ ∧ y::x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁,
obtain (s₂₁ s₂₂ : list A) (C₂ : s₂ = s₂₁ ++ s₂₂ ∧ x::y::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂,
discr₂ (and.elim_right C₁)
obtain (s₁₁ s₁₂ : list A) (C₁₁ : s₁ = s₁₁ ++ s₁₂) (C₁₂ : y::x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁,
obtain (s₂₁ s₂₂ : list A) (C₂₁ : s₂ = s₂₁ ++ s₂₂) (C₂₂ : x::y::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂,
discr₂ C₁₂
(λ (s₁₁_eq : s₁₁ = []) (s₁₂_eq : s₁₂ = x::t₁) (y_eq_a : y = a),
assert s₁_p : s₁ ~ x::t₂, from calc
s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁
s₁ = s₁₁ ++ s₁₂ : C₁
... = x::t₁ : by rewrite [s₁₂_eq, s₁₁_eq, append_nil_left]
... ~ x::t₂ : skip x p,
discr₂ (and.elim_right C₂)
discr₂ C₂₂
(λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a),
proof calc
s₁ ~ x::t₂ : s₁_p
... = s₂₁ ++ s₂₂ : by rewrite [x_eq_a, -y_eq_a, -s₂₂_eq, s₂₁_eq, append_nil_left]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂),
proof calc
s₁ ~ x::t₂ : s₁_p
... = s₂₁ ++ s₂₂ : by rewrite [t₂_eq, s₂₁_eq, append_cons]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)),
proof calc
@ -384,24 +384,24 @@ perm_induction_on p'
... = x::(ts₂₁++(y::s₂₂)) : by rewrite [t₂_eq, -y_eq_a]
... ~ x::y::(ts₂₁++s₂₂) : skip x !perm_middle
... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, append_cons]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed))
(λ (s₁₁_eq : s₁₁ = [y]) (x_eq_a : x = a) (t₁_eq : t₁ = s₁₂),
assert s₁_p : s₁ ~ y::t₂, from calc
s₁ = y::t₁ : by rewrite [and.elim_left C₁, s₁₁_eq, t₁_eq]
s₁ = y::t₁ : by rewrite [C₁, s₁₁_eq, t₁_eq]
... ~ y::t₂ : skip y p,
discr₂ (and.elim_right C₂)
discr₂ C₂₂
(λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a),
proof calc
s₁ ~ y::t₂ : s₁_p
... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, s₂₂_eq]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂),
proof calc
s₁ ~ y::t₂ : s₁_p
... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, t₂_eq, y_eq_a, -x_eq_a]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)),
proof calc
@ -410,11 +410,11 @@ perm_induction_on p'
... ~ y::x::(ts₂₁++s₂₂) : skip y !perm_middle
... ~ x::y::(ts₂₁++s₂₂) : swap
... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed))
(λ (ts₁₁ : list A) (s₁₁_eq : s₁₁ = y::x::ts₁₁) (t₁_eq : t₁ = ts₁₁++(a::s₁₂)),
assert s₁_eq : s₁ = y::x::(ts₁₁++s₁₂), by rewrite [and.elim_left C₁, s₁₁_eq],
discr₂ (and.elim_right C₂)
assert s₁_eq : s₁ = y::x::(ts₁₁++s₁₂), by rewrite [C₁, s₁₁_eq],
discr₂ C₂₂
(λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a),
proof calc
s₁ = y::a::(ts₁₁++s₁₂) : by rewrite [s₁_eq, x_eq_a]
@ -422,7 +422,7 @@ perm_induction_on p'
... = y::t₁ : by rewrite t₁_eq
... ~ y::t₂ : skip y p
... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, s₂₂_eq]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂),
proof calc
@ -433,7 +433,7 @@ perm_induction_on p'
... = x::t₁ : by rewrite t₁_eq
... ~ x::t₂ : skip x p
... = s₂₁ ++ s₂₂ : by rewrite [t₂_eq, s₂₁_eq]
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)
(λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)),
assert t₁_qeq : t₁ ≈ a|(ts₁₁++s₁₂), by rewrite t₁_eq; exact !qeq_app,
@ -444,7 +444,7 @@ perm_induction_on p'
... ~ y::x::(ts₂₁++s₂₂) : skip y (skip x p_aux)
... ~ x::y::(ts₂₁++s₂₂) : swap
... = s₂₁ ++ s₂₂ : by rewrite s₂₁_eq
... = s₂ : by rewrite [and.elim_left C₂]
... = s₂ : by rewrite C₂₁
qed)))
(λ t₁ t₂ t₃ p₁ p₂
(r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂)