fix(library/elaborator): add hack for experimenting with algebraic hierarchy
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
aa8240985a
commit
1d10953da4
2 changed files with 111 additions and 1 deletions
108
examples/lean/test_algebra.lean
Normal file
108
examples/lean/test_algebra.lean
Normal file
|
@ -0,0 +1,108 @@
|
||||||
|
import macros
|
||||||
|
|
||||||
|
---
|
||||||
|
--- Classes of structures, and axiomatic classes of structures
|
||||||
|
---
|
||||||
|
|
||||||
|
--- A "structure" consists of a carrier, and some data (whose type depends on the carrier)
|
||||||
|
|
||||||
|
definition StructClass : (Type 1) := Type → Type -- the type of the data
|
||||||
|
|
||||||
|
definition structure (S : StructClass) : (Type 1)
|
||||||
|
:= sig T : Type, S T
|
||||||
|
|
||||||
|
definition carrier {S : StructClass} (M : structure S) : Type
|
||||||
|
:= proj1 M
|
||||||
|
|
||||||
|
definition data {S : StructClass} (M : structure S) : S (carrier M)
|
||||||
|
:= proj2 M
|
||||||
|
|
||||||
|
--- An "axiomatic class" is a class of structures satisfying some predicate (the "axioms")
|
||||||
|
|
||||||
|
definition AxClass : (Type 1)
|
||||||
|
:= sig S : StructClass, structure S → Bool
|
||||||
|
|
||||||
|
-- Coercion from AxClass to StructClass
|
||||||
|
definition struct_class (C : AxClass) : StructClass
|
||||||
|
:= proj1 C
|
||||||
|
|
||||||
|
definition axioms {C : AxClass} (M : structure (struct_class C))
|
||||||
|
:= proj2 C M
|
||||||
|
|
||||||
|
definition instance (C : AxClass) : (Type 1)
|
||||||
|
:= sig M : structure (struct_class C), axioms M
|
||||||
|
|
||||||
|
definition struct {C : AxClass} (M : instance C)
|
||||||
|
:= proj1 M
|
||||||
|
|
||||||
|
definition hyps {C : AxClass} (M : instance C) : axioms (struct M)
|
||||||
|
:= proj2 M
|
||||||
|
|
||||||
|
---
|
||||||
|
--- Examples
|
||||||
|
---
|
||||||
|
|
||||||
|
--- multiplication (for overloading *)
|
||||||
|
|
||||||
|
definition MulStruct : StructClass
|
||||||
|
:= λ T, T → T → T
|
||||||
|
|
||||||
|
definition mul {M : structure MulStruct} (x y : carrier M) : carrier M
|
||||||
|
:= data M x y
|
||||||
|
|
||||||
|
infixl 70 * : mul
|
||||||
|
|
||||||
|
definition mul_is_assoc (M : structure MulStruct) : Bool
|
||||||
|
:= ∀ x y z : carrier M, (x * y) * z = x * (y * z)
|
||||||
|
|
||||||
|
definition mul_is_comm (M : structure MulStruct) : Bool
|
||||||
|
:= ∀ x y z : carrier M, x * y = y * x
|
||||||
|
|
||||||
|
--- semigroups
|
||||||
|
|
||||||
|
definition Semigroup : AxClass
|
||||||
|
:= pair MulStruct mul_is_assoc
|
||||||
|
|
||||||
|
--- to fill the hole above automatically
|
||||||
|
theorem semigroup_mul_is_assoc (M : instance Semigroup) : mul_is_assoc (struct M)
|
||||||
|
:= hyps M
|
||||||
|
|
||||||
|
definition OneStruct : StructClass
|
||||||
|
:= λ T, T
|
||||||
|
|
||||||
|
definition one {M : structure OneStruct} : carrier M
|
||||||
|
:= data M
|
||||||
|
|
||||||
|
-- structures with mult and one
|
||||||
|
|
||||||
|
definition MonoidStruct : StructClass
|
||||||
|
:= λ T, OneStruct T # MulStruct T
|
||||||
|
|
||||||
|
definition MonoidStruct_to_OneStruct (M : structure MonoidStruct) : (structure OneStruct)
|
||||||
|
:= pair (carrier M) (proj1 (data M))
|
||||||
|
|
||||||
|
definition MonoidStruct_to_MulStruct (M : structure MonoidStruct) : (structure MulStruct)
|
||||||
|
:= pair (carrier M) (proj2 (data M))
|
||||||
|
|
||||||
|
variable M : structure MonoidStruct
|
||||||
|
check carrier M = carrier (MonoidStruct_to_OneStruct M)
|
||||||
|
|
||||||
|
theorem test1 (M : structure MonoidStruct) : carrier M = carrier (MonoidStruct_to_OneStruct M)
|
||||||
|
:= refl (carrier M)
|
||||||
|
|
||||||
|
definition is_mul_right_id (M : structure MonoidStruct) : Bool
|
||||||
|
:= let m : carrier M → carrier M → carrier M := @mul (MonoidStruct_to_MulStruct M),
|
||||||
|
o : carrier M := @one (MonoidStruct_to_OneStruct M)
|
||||||
|
in ∀ x : carrier M, m x o = x
|
||||||
|
|
||||||
|
definition is_monoid (M : structure MonoidStruct) : Bool
|
||||||
|
:= mul_is_assoc (MonoidStruct_to_MulStruct M) ∧ is_mul_right_id M
|
||||||
|
|
||||||
|
definition Monoid : AxClass
|
||||||
|
:= pair MonoidStruct is_monoid
|
||||||
|
|
||||||
|
theorem monoid_is_mul_right_id (M : instance Monoid) : is_mul_right_id (struct M)
|
||||||
|
:= and_elimr (proj2 M)
|
||||||
|
|
||||||
|
theorem monoid_mul_is_assoc (M : instance Monoid) : mul_is_assoc (MonoidStruct_to_MulStruct (struct M))
|
||||||
|
:= and_eliml (proj2 M)
|
|
@ -1641,7 +1641,9 @@ class elaborator::imp {
|
||||||
if (process_assigned_metavar(c, a, true) || process_assigned_metavar(c, b, false))
|
if (process_assigned_metavar(c, a, true) || process_assigned_metavar(c, b, false))
|
||||||
return true;
|
return true;
|
||||||
|
|
||||||
if (m_assume_injectivity && is_app(a) && is_app(b) && num_args(a) == num_args(b) && arg(a, 0) == arg(b, 0) && !is_metavar(arg(a, 0))) {
|
if (m_assume_injectivity && is_app(a) && is_app(b) && num_args(a) == num_args(b) && arg(a, 0) == arg(b, 0) && !is_metavar(arg(a, 0))
|
||||||
|
// BIG (temporary) HACK
|
||||||
|
&& !(is_constant(arg(a, 0)) && const_name(arg(a, 0)) == "carrier")) {
|
||||||
// If m_assume_injectivity is true, we apply the following rule
|
// If m_assume_injectivity is true, we apply the following rule
|
||||||
// ctx |- (f a1 a2) ≈ (f b1 b2)
|
// ctx |- (f a1 a2) ≈ (f b1 b2)
|
||||||
// ==>
|
// ==>
|
||||||
|
|
Loading…
Reference in a new issue