chore(frontends/lean): rename 'obtains' to 'obtain'

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-12 06:35:24 +01:00
parent 24540056c5
commit 1d273fcfdd
5 changed files with 14 additions and 14 deletions

View file

@ -204,7 +204,7 @@ theorem exists_unique_intro {A : Type} {p : A → Bool} (w : A) (H1 : p w) (H2 :
:= exists_intro w (and_intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Bool} {b : Bool} (H2 : ∃! x, p x) (H1 : ∀ x, p x → (∀ y, y ≠ x → ¬ p y) → b) : b
:= obtains w Hw, from H2,
:= obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw)
inductive inhabited (A : Type) : Bool :=
@ -237,13 +237,13 @@ definition heq {A B : Type} (a : A) (b : B) := ∃ H, cast H a = b
infixl `==`:50 := heq
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= obtains w Hw, from H, w
:= obtain w Hw, from H, w
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
:= exists_intro (refl A) (trans (cast_refl a) H)
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
:= obtains (w : A = A) (Hw : cast w a = b), from H,
:= obtain (w : A = A) (Hw : cast w a = b), from H,
calc a = cast w a : symm (cast_eq w a)
... = b : Hw
@ -258,7 +258,7 @@ opaque_hint (hiding cast)
theorem hsubst {A B : Type} {a : A} {b : B} {P : ∀ (T : Type), T → Bool} (H1 : a == b) (H2 : P A a) : P B b
:= have Haux1 : ∀ H : A = A, P A (cast H a), from
assume H : A = A, subst (symm (cast_eq H a)) H2,
obtains (Heq : A = B) (Hw : cast Heq a = b), from H1,
obtain (Heq : A = B) (Hw : cast Heq a = b), from H1,
have Haux2 : P B (cast Heq a), from subst Heq Haux1 Heq,
subst Hw Haux2

View file

@ -279,16 +279,16 @@ static expr parse_show(parser & p, unsigned, expr const *, pos_info const & pos)
}
static name g_exists_elim("exists_elim");
static expr parse_obtains(parser & p, unsigned, expr const *, pos_info const & pos) {
static expr parse_obtain(parser & p, unsigned, expr const *, pos_info const & pos) {
if (!p.env().find(g_exists_elim))
throw parser_error("invalid use of 'obtains' expression, environment does not contain 'exists_elim' theorem", pos);
throw parser_error("invalid use of 'obtain' expression, environment does not contain 'exists_elim' theorem", pos);
// exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B)
buffer<expr> ps;
auto b_pos = p.pos();
environment env = p.parse_binders(ps);
unsigned num_ps = ps.size();
if (num_ps < 2)
throw parser_error("invalid 'obtains' expression, at least 2 binders expected", b_pos);
throw parser_error("invalid 'obtain' expression, at least 2 binders expected", b_pos);
bool is_fact = false;
if (p.curr_is_token(g_fact)) {
p.next();
@ -298,10 +298,10 @@ static expr parse_obtains(parser & p, unsigned, expr const *, pos_info const & p
expr H = ps[num_ps-1];
ps[num_ps-1] = update_local(H, mlocal_type(H), local_info(H).update_contextual(false));
}
p.check_token_next(g_comma, "invalid 'obtains' expression, ',' expected");
p.check_token_next(g_from, "invalid 'obtains' expression, 'from' expected");
p.check_token_next(g_comma, "invalid 'obtain' expression, ',' expected");
p.check_token_next(g_from, "invalid 'obtain' expression, 'from' expected");
expr H1 = p.parse_expr();
p.check_token_next(g_comma, "invalid 'obtains' expression, ',' expected");
p.check_token_next(g_comma, "invalid 'obtain' expression, ',' expected");
expr b = p.parse_scoped_expr(ps, env);
expr H = ps[num_ps-1];
name H_name = local_pp_name(H);
@ -371,7 +371,7 @@ parse_table init_nud_table() {
r = r.add({transition("by", mk_ext_action(parse_by))}, x0);
r = r.add({transition("have", mk_ext_action(parse_have))}, x0);
r = r.add({transition("show", mk_ext_action(parse_show))}, x0);
r = r.add({transition("obtains", mk_ext_action(parse_obtains))}, x0);
r = r.add({transition("obtain", mk_ext_action(parse_obtain))}, x0);
r = r.add({transition("(", Expr), transition(")", Skip)}, x0);
r = r.add({transition("fun", Binders), transition(",", mk_scoped_expr_action(x0))}, x0);
r = r.add({transition("Pi", Binders), transition(",", mk_scoped_expr_action(x0, 0, false))}, x0);

View file

@ -65,7 +65,7 @@ static char const * g_cup = "\u2294";
token_table init_token_table() {
token_table t;
std::pair<char const *, unsigned> builtin[] =
{{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"have", 0}, {"show", 0}, {"obtains", 0}, {"by", 0}, {"then", 0},
{{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"have", 0}, {"show", 0}, {"obtain", 0}, {"by", 0}, {"then", 0},
{"from", 0}, {"(", g_max_prec}, {")", 0}, {"{", g_max_prec}, {"}", 0}, {"_", g_max_prec},
{"[", g_max_prec}, {"]", 0}, {"", g_max_prec}, {"", 0}, {".{", 0}, {"Type", g_max_prec}, {"Type'", g_max_prec},
{"|", 0}, {"!", 0}, {"with", 0}, {"...", 0}, {",", 0}, {".", 0}, {":", 0}, {"calc", 0}, {":=", 0}, {"--", 0}, {"#", 0},

View file

@ -4,4 +4,4 @@ variable p : num → num → num → Bool
axiom H1 : ∃ x y z, p x y z
axiom H2 : ∀ {x y z : num}, p x y z → p x x x
theorem tst : ∃ x, p x x x
:= obtains a b c H, from H1, exists_intro a (H2 H)
:= obtain a b c H, from H1, exists_intro a (H2 H)

View file

@ -4,5 +4,5 @@ variable p : num → num → num → Bool
axiom H1 : ∃ x y z, p x y z
axiom H2 : ∀ {x y z : num}, p x y z → p x x x
theorem tst : ∃ x, p x x x
:= obtains a b c H [fact], from H1,
:= obtain a b c H [fact], from H1,
by (apply exists_intro; apply H2; eassumption)