refactor(builtin): more theorems, fix iff notation

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-16 09:00:01 -08:00
parent 7d6cd514d1
commit 1da4294793
7 changed files with 98 additions and 65 deletions

View file

@ -36,7 +36,7 @@ axiom add_zeror (a : Nat) : a + 0 = a
axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1 axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1
axiom mul_zeror (a : Nat) : a * 0 = 0 axiom mul_zeror (a : Nat) : a * 0 = 0
axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a
axiom le_def (a b : Nat) : a ≤ b ∃ c, a + c = b axiom le_def (a b : Nat) : a ≤ b ∃ c, a + c = b
axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a
theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a

View file

@ -45,7 +45,7 @@ theorem hcongr
L3 : b == b' := cast_eq L2 b, L3 : b == b' := cast_eq L2 b,
L4 : a == b' := htrans H2 L3, L4 : a == b' := htrans H2 L3,
L5 : f a == f b' := congr2 f L4, L5 : f a == f b' := congr2 f L4,
S1 : (∀ x, B' x) == (∀ x, B x) := symm (type_eq H1), S1 : (∀ x, B' x) == (∀ x, B x) := symm (type_eq H1),
g' : (∀ x, B x) := cast S1 g, g' : (∀ x, B x) := cast S1 g,
L6 : g == g' := cast_eq S1 g, L6 : g == g' := cast_eq S1 g,
L7 : f == g' := htrans H1 L6, L7 : f == g' := htrans H1 L6,
@ -54,6 +54,17 @@ theorem hcongr
L10 : g' b' == g b := cast_app S1 L2 g b L10 : g' b' == g b := cast_app S1 L2 g b
in htrans L9 L10 in htrans L9 L10
theorem hfunext
{A : TypeM} {B B' : A → TypeM} {f : ∀ x : A, B x} {g : ∀ x : A, B' x} (H : ∀ x : A, f x == g x) : f == g
:= let L1 : (∀ x : A, B x = B' x) := λ x : A, type_eq (H x),
L2 : (∀ x : A, B x) = (∀ x : A, B' x) := allext L1,
g' : (∀ x : A, B x) := cast (symm L2) g,
Hgg : g == g' := cast_eq (symm L2) g,
Hggx : (∀ x : A, g x == g' x) := λ x : A, hcongr Hgg (refl x) ,
L3 : (∀ x : A, f x == g' x) := λ x : A, htrans (H x) (Hggx x),
Hfg : f == g' := funext L3
in htrans Hfg (hsymm Hgg)
exit -- Stop here, the following axiom is not sound exit -- Stop here, the following axiom is not sound
-- The following axiom is unsound when we treat Pi and -- The following axiom is unsound when we treat Pi and

View file

@ -30,7 +30,7 @@ definition implies (a b : Bool) := a → b
definition iff (a b : Bool) := a == b definition iff (a b : Bool) := a == b
infixr 25 <-> : iff infixr 25 <-> : iff
infixr 25 : iff infixr 25 : iff
-- The Lean parser has special treatment for the constant exists. -- The Lean parser has special treatment for the constant exists.
-- It allows us to write -- It allows us to write
@ -103,8 +103,8 @@ theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha) := assume Ha, H2 (H1 ◂ Ha)
theorem not_not_eq (a : Bool) : ¬ ¬ a a theorem not_not_eq (a : Bool) : ¬ ¬ a a
:= case (λ x, ¬ ¬ x x) trivial trivial a := case (λ x, ¬ ¬ x x) trivial trivial a
theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a
:= (not_not_eq a) ◂ H := (not_not_eq a) ◂ H
@ -174,6 +174,16 @@ theorem eq_ne_trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠
theorem ne_eq_trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c theorem ne_eq_trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H1 H2 := subst H1 H2
theorem heq_congr {A : TypeU} {a b c d : A} (H1 : a == c) (H2 : b == d) : (a == b) = (c == d)
:= calc (a == b) = (c == b) : { H1 }
... = (c == d) : { H2 }
theorem heq_congrl {A : TypeU} {a : A} (b : A) {c : A} (H : a == c) : (a == b) = (c == b)
:= heq_congr H (refl b)
theorem heq_congrr {A : TypeU} (a : A) {b d : A} (H : b == d) : (a == b) = (a == d)
:= heq_congr (refl a) H
theorem eqt_elim {a : Bool} (H : a = true) : a theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial := (symm H) ◂ trivial
@ -228,14 +238,14 @@ theorem eqf_intro {a : Bool} (H : ¬ a) : a = false
:= boolext (assume H1 : a, absurd H1 H) := boolext (assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim a H2) (assume H2 : false, false_elim a H2)
theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b false theorem neq_elim {A : TypeU} {a b : A} (H : a ≠ b) : a = b false
:= eqf_intro H := eqf_intro H
theorem or_comm (a b : Bool) : a b b a theorem or_comm (a b : Bool) : a b b a
:= boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a)) := boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a))
(assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b)) (assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b))
theorem or_assoc (a b c : Bool) : (a b) c a (b c) theorem or_assoc (a b c : Bool) : (a b) c a (b c)
:= boolext (assume H : (a b) c, := boolext (assume H : (a b) c,
or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c)) or_elim H (λ H1 : a b, or_elim H1 (λ Ha : a, or_introl Ha (b c))
(λ Hb : b, or_intror a (or_introl Hb c))) (λ Hb : b, or_intror a (or_introl Hb c)))
@ -245,118 +255,118 @@ theorem or_assoc (a b c : Bool) : (a b) c ⟷ a (b c)
(λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c) (λ H1 : b c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c)
(λ Hc : c, or_intror (a b) Hc))) (λ Hc : c, or_intror (a b) Hc)))
theorem or_id (a : Bool) : a a a theorem or_id (a : Bool) : a a a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2)) := boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2))
(assume H, or_introl H a) (assume H, or_introl H a)
theorem or_falsel (a : Bool) : a false a theorem or_falsel (a : Bool) : a false a
:= boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2)) := boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2))
(assume H, or_introl H false) (assume H, or_introl H false)
theorem or_falser (a : Bool) : false a a theorem or_falser (a : Bool) : false a a
:= (or_comm false a) ⋈ (or_falsel a) := (or_comm false a) ⋈ (or_falsel a)
theorem or_truel (a : Bool) : true a true theorem or_truel (a : Bool) : true a true
:= eqt_intro (case (λ x : Bool, true x) trivial trivial a) := eqt_intro (case (λ x : Bool, true x) trivial trivial a)
theorem or_truer (a : Bool) : a true true theorem or_truer (a : Bool) : a true true
:= (or_comm a true) ⋈ (or_truel a) := (or_comm a true) ⋈ (or_truel a)
theorem or_tauto (a : Bool) : a ¬ a true theorem or_tauto (a : Bool) : a ¬ a true
:= eqt_intro (em a) := eqt_intro (em a)
theorem and_comm (a b : Bool) : a ∧ b b ∧ a theorem and_comm (a b : Bool) : a ∧ b b ∧ a
:= boolext (assume H, and_intro (and_elimr H) (and_eliml H)) := boolext (assume H, and_intro (and_elimr H) (and_eliml H))
(assume H, and_intro (and_elimr H) (and_eliml H)) (assume H, and_intro (and_elimr H) (and_eliml H))
theorem and_id (a : Bool) : a ∧ a a theorem and_id (a : Bool) : a ∧ a a
:= boolext (assume H, and_eliml H) := boolext (assume H, and_eliml H)
(assume H, and_intro H H) (assume H, and_intro H H)
theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c a ∧ (b ∧ c) theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c a ∧ (b ∧ c)
:= boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H))) := boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H)))
(assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H))) (assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H)))
theorem and_truer (a : Bool) : a ∧ true a theorem and_truer (a : Bool) : a ∧ true a
:= boolext (assume H : a ∧ true, and_eliml H) := boolext (assume H : a ∧ true, and_eliml H)
(assume H : a, and_intro H trivial) (assume H : a, and_intro H trivial)
theorem and_truel (a : Bool) : true ∧ a a theorem and_truel (a : Bool) : true ∧ a a
:= trans (and_comm true a) (and_truer a) := trans (and_comm true a) (and_truer a)
theorem and_falsel (a : Bool) : a ∧ false false theorem and_falsel (a : Bool) : a ∧ false false
:= boolext (assume H, and_elimr H) := boolext (assume H, and_elimr H)
(assume H, false_elim (a ∧ false) H) (assume H, false_elim (a ∧ false) H)
theorem and_falser (a : Bool) : false ∧ a false theorem and_falser (a : Bool) : false ∧ a false
:= (and_comm false a) ⋈ (and_falsel a) := (and_comm false a) ⋈ (and_falsel a)
theorem and_absurd (a : Bool) : a ∧ ¬ a false theorem and_absurd (a : Bool) : a ∧ ¬ a false
:= boolext (assume H, absurd (and_eliml H) (and_elimr H)) := boolext (assume H, absurd (and_eliml H) (and_elimr H))
(assume H, false_elim (a ∧ ¬ a) H) (assume H, false_elim (a ∧ ¬ a) H)
theorem imp_truer (a : Bool) : (a → true) true theorem imp_truer (a : Bool) : (a → true) true
:= case (λ x, (x → true) true) trivial trivial a := case (λ x, (x → true) true) trivial trivial a
theorem imp_truel (a : Bool) : (true → a) a theorem imp_truel (a : Bool) : (true → a) a
:= case (λ x, (true → x) x) trivial trivial a := case (λ x, (true → x) x) trivial trivial a
theorem imp_falser (a : Bool) : (a → false) ¬ a theorem imp_falser (a : Bool) : (a → false) ¬ a
:= refl _ := refl _
theorem imp_falsel (a : Bool) : (false → a) true theorem imp_falsel (a : Bool) : (false → a) true
:= case (λ x, (false → x) true) trivial trivial a := case (λ x, (false → x) true) trivial trivial a
theorem not_and (a b : Bool) : ¬ (a ∧ b) ¬ a ¬ b theorem not_and (a b : Bool) : ¬ (a ∧ b) ¬ a ¬ b
:= case (λ x, ¬ (x ∧ b) ¬ x ¬ b) := case (λ x, ¬ (x ∧ b) ¬ x ¬ b)
(case (λ y, ¬ (true ∧ y) ¬ true ¬ y) trivial trivial b) (case (λ y, ¬ (true ∧ y) ¬ true ¬ y) trivial trivial b)
(case (λ y, ¬ (false ∧ y) ¬ false ¬ y) trivial trivial b) (case (λ y, ¬ (false ∧ y) ¬ false ¬ y) trivial trivial b)
a a
theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ¬ b
:= (not_and a b) ◂ H := (not_and a b) ◂ H
theorem not_or (a b : Bool) : ¬ (a b) ¬ a ∧ ¬ b theorem not_or (a b : Bool) : ¬ (a b) ¬ a ∧ ¬ b
:= case (λ x, ¬ (x b) ¬ x ∧ ¬ b) := case (λ x, ¬ (x b) ¬ x ∧ ¬ b)
(case (λ y, ¬ (true y) ¬ true ∧ ¬ y) trivial trivial b) (case (λ y, ¬ (true y) ¬ true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false y) ¬ false ∧ ¬ y) trivial trivial b) (case (λ y, ¬ (false y) ¬ false ∧ ¬ y) trivial trivial b)
a a
theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b theorem not_or_elim {a b : Bool} (H : ¬ (a b)) : ¬ a ∧ ¬ b
:= (not_or a b) ◂ H := (not_or a b) ◂ H
theorem not_iff (a b : Bool) : ¬ (a ⟷ b) ⟷ (¬ a ⟷ b) theorem not_iff (a b : Bool) : ¬ (a ↔ b) ↔ (¬ a ↔ b)
:= case (λ x, ¬ (x ⟷ b) ⟷ ((¬ x) ⟷ b)) := case (λ x, ¬ (x ↔ b) ↔ ((¬ x) ↔ b))
(case (λ y, ¬ (true ⟷ y) ⟷ ((¬ true) ⟷ y)) trivial trivial b) (case (λ y, ¬ (true ↔ y) ↔ ((¬ true) ↔ y)) trivial trivial b)
(case (λ y, ¬ (false ⟷ y) ⟷ ((¬ false) ⟷ y)) trivial trivial b) (case (λ y, ¬ (false ↔ y) ↔ ((¬ false) ↔ y)) trivial trivial b)
a a
theorem not_iff_elim {a b : Bool} (H : ¬ (a ⟷ b)) : (¬ a) ⟷ b theorem not_iff_elim {a b : Bool} (H : ¬ (a ↔ b)) : (¬ a) ↔ b
:= (not_iff a b) ◂ H := (not_iff a b) ◂ H
theorem not_implies (a b : Bool) : ¬ (a → b) a ∧ ¬ b theorem not_implies (a b : Bool) : ¬ (a → b) a ∧ ¬ b
:= case (λ x, ¬ (x → b) x ∧ ¬ b) := case (λ x, ¬ (x → b) x ∧ ¬ b)
(case (λ y, ¬ (true → y) true ∧ ¬ y) trivial trivial b) (case (λ y, ¬ (true → y) true ∧ ¬ y) trivial trivial b)
(case (λ y, ¬ (false → y) false ∧ ¬ y) trivial trivial b) (case (λ y, ¬ (false → y) false ∧ ¬ y) trivial trivial b)
a a
theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b
:= (not_implies a b) ◂ H := (not_implies a b) ◂ H
theorem not_congr {a b : Bool} (H : a ⟷ b) : ¬ a ⟷ ¬ b theorem not_congr {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b
:= congr2 not H := congr2 not H
theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ⟷ Q x) : (∃ x : A, P x) ⟷ (∃ x : A, Q x) theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ↔ Q x) : (∃ x : A, P x) ↔ (∃ x : A, Q x)
:= congr2 (Exists A) (funext H) := congr2 (Exists A) (funext H)
theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) (∃ x : A, ¬ P x) theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) (∃ x : A, ¬ P x)
:= calc (¬ ∀ x : A, P x) = ¬ ∀ x : A, ¬ ¬ P x : not_congr (allext (λ x : A, symm (not_not_eq (P x)))) := calc (¬ ∀ x : A, P x) = ¬ ∀ x : A, ¬ ¬ P x : not_congr (allext (λ x : A, symm (not_not_eq (P x))))
... = ∃ x : A, ¬ P x : refl (∃ x : A, ¬ P x) ... = ∃ x : A, ¬ P x : refl (∃ x : A, ¬ P x)
theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not_forall A P) ◂ H := (not_forall A P) ◂ H
theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) (∀ x : A, ¬ P x) theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) (∀ x : A, ¬ P x)
:= calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x) := calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x)
... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x) ... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x)
@ -378,7 +388,7 @@ theorem exists_unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a (∃ x
(λ (w : A) (Hw : w ≠ a ∧ P w), (λ (w : A) (Hw : w ≠ a ∧ P w),
exists_intro w (and_elimr Hw))) exists_intro w (and_elimr Hw)))
theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) (P a (∃ x : A, x ≠ a ∧ P x)) theorem exists_unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) (P a (∃ x : A, x ≠ a ∧ P x))
:= boolext (assume H : (∃ x : A, P x), exists_unfold1 a H) := boolext (assume H : (∃ x : A, P x), exists_unfold1 a H)
(assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H) (assume H : (P a (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H)
@ -390,10 +400,10 @@ theorem left_comm {A : TypeU} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x)
... = R (R y x) z : { comm x y } ... = R (R y x) z : { comm x y }
... = R y (R x z) : assoc y x z ... = R y (R x z) : assoc y x z
theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) b ∧ (a ∧ c) theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) b ∧ (a ∧ c)
:= left_comm and_comm and_assoc a b c := left_comm and_comm and_assoc a b c
theorem or_left_comm (a b c : Bool) : a (b c) b (a c) theorem or_left_comm (a b c : Bool) : a (b c) b (a c)
:= left_comm or_comm or_assoc a b c := left_comm or_comm or_assoc a b c
-- Congruence theorems for contextual simplification -- Congruence theorems for contextual simplification
@ -463,24 +473,24 @@ theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d)
:= imp_congrr (λ H, H_ac) H_bd := imp_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact that a b is defined as ¬ a → b -- In the following theorems we are using the fact that a b is defined as ¬ a → b
theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b c d theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b c d
:= imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd := imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd
theorem or_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_na : ¬ a), b = d) : a b c d theorem or_congrl {a b c d : Bool} (H_ac : ∀ (H_nd : ¬ d), a = c) (H_bd : ∀ (H_na : ¬ a), b = d) : a b c d
:= imp_congrl (λ H_nd : ¬ d, congr2 not (H_ac H_nd)) H_bd := imp_congrl (λ H_nd : ¬ d, congr2 not (H_ac H_nd)) H_bd
-- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true -- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true
theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b c d theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a b c d
:= or_congrr (λ H, H_ac) H_bd := or_congrr (λ H, H_ac) H_bd
-- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b) -- In the following theorems we are using the fact hat a ∧ b is defined as ¬ (a → ¬ b)
theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b c ∧ d theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b c ∧ d
:= congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c))) := congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c)))
theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H_a : a), b = d) : a ∧ b c ∧ d theorem and_congrl {a b c d : Bool} (H_ac : ∀ (H_d : d), a = c) (H_bd : ∀ (H_a : a), b = d) : a ∧ b c ∧ d
:= congr2 not (imp_congrl (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)) (λ H_a : a, congr2 not (H_bd H_a))) := congr2 not (imp_congrl (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd)) (λ H_a : a, congr2 not (H_bd H_a)))
-- (Common case) simplify a to c, and then b to d using the fact that c is true -- (Common case) simplify a to c, and then b to d using the fact that c is true
theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b c ∧ d theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b c ∧ d
:= and_congrr (λ H, H_ac) H_bd := and_congrr (λ H, H_ac) H_bd
theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) p ∀ x, φ x theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, p φ x) p ∀ x, φ x
:= boolext := boolext
(assume H : (∀ x, p φ x), (assume H : (∀ x, p φ x),
or_elim (em p) or_elim (em p)
@ -493,19 +503,19 @@ theorem forall_or_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x,
(λ H1 : p, or_introl H1 (φ x)) (λ H1 : p, or_introl H1 (φ x))
(λ H2 : (∀ x, φ x), or_intror p (H2 x))) (λ H2 : (∀ x, φ x), or_intror p (H2 x)))
theorem forall_or_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) (∀ x, φ x) p theorem forall_or_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∀ x, φ x p) (∀ x, φ x) p
:= calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p) := calc (∀ x, φ x p) = (∀ x, p φ x) : allext (λ x, or_comm (φ x) p)
... = (p ∀ x, φ x) : forall_or_distributer p φ ... = (p ∀ x, φ x) : forall_or_distributer p φ
... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x) ... = ((∀ x, φ x) p) : or_comm p (∀ x, φ x)
theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) (∀ x, φ x) ∧ (∀ x, ψ x) theorem forall_and_distribute {A : TypeU} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) (∀ x, φ x) ∧ (∀ x, ψ x)
:= boolext := boolext
(assume H : (∀ x, φ x ∧ ψ x), (assume H : (∀ x, φ x ∧ ψ x),
and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x))) and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x)))
(assume H : (∀ x, φ x) ∧ (∀ x, ψ x), (assume H : (∀ x, φ x) ∧ (∀ x, ψ x),
take x, and_intro (and_eliml H x) (and_elimr H x)) take x, and_intro (and_eliml H x) (and_elimr H x))
theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) p ∧ ∃ x, φ x theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) p ∧ ∃ x, φ x
:= boolext := boolext
(assume H : (∃ x, p ∧ φ x), (assume H : (∃ x, p ∧ φ x),
obtain (w : A) (Hw : p ∧ φ w), from H, obtain (w : A) (Hw : p ∧ φ w), from H,
@ -514,12 +524,12 @@ theorem exists_and_distributer {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x
obtain (w : A) (Hw : φ w), from (and_elimr H), obtain (w : A) (Hw : φ w), from (and_elimr H),
exists_intro w (and_intro (and_eliml H) Hw)) exists_intro w (and_intro (and_eliml H) Hw))
theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) (∃ x, φ x) ∧ p theorem exists_and_distributel {A : TypeU} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) (∃ x, φ x) ∧ p
:= calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p) := calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p)
... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ ... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ
... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x) ... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x)
theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) (∃ x, φ x) (∃ x, ψ x) theorem exists_or_distribute {A : TypeU} (φ ψ : A → Bool) : (∃ x, φ x ψ x) (∃ x, φ x) (∃ x, ψ x)
:= boolext := boolext
(assume H : (∃ x, φ x ψ x), (assume H : (∃ x, φ x ψ x),
obtain (w : A) (Hw : φ w ψ w), from H, obtain (w : A) (Hw : φ w ψ w), from H,

Binary file not shown.

Binary file not shown.

View file

@ -53,6 +53,9 @@ MK_CONSTANT(trans_fn, name("trans"));
MK_CONSTANT(ne_symm_fn, name("ne_symm")); MK_CONSTANT(ne_symm_fn, name("ne_symm"));
MK_CONSTANT(eq_ne_trans_fn, name("eq_ne_trans")); MK_CONSTANT(eq_ne_trans_fn, name("eq_ne_trans"));
MK_CONSTANT(ne_eq_trans_fn, name("ne_eq_trans")); MK_CONSTANT(ne_eq_trans_fn, name("ne_eq_trans"));
MK_CONSTANT(heq_congr_fn, name("heq_congr"));
MK_CONSTANT(heq_congrl_fn, name("heq_congrl"));
MK_CONSTANT(heq_congrr_fn, name("heq_congrr"));
MK_CONSTANT(eqt_elim_fn, name("eqt_elim")); MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
MK_CONSTANT(eqf_elim_fn, name("eqf_elim")); MK_CONSTANT(eqf_elim_fn, name("eqf_elim"));
MK_CONSTANT(congr1_fn, name("congr1")); MK_CONSTANT(congr1_fn, name("congr1"));

View file

@ -151,6 +151,15 @@ inline expr mk_eq_ne_trans_th(expr const & e1, expr const & e2, expr const & e3,
expr mk_ne_eq_trans_fn(); expr mk_ne_eq_trans_fn();
bool is_ne_eq_trans_fn(expr const & e); bool is_ne_eq_trans_fn(expr const & e);
inline expr mk_ne_eq_trans_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_ne_eq_trans_fn(), e1, e2, e3, e4, e5, e6}); } inline expr mk_ne_eq_trans_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_ne_eq_trans_fn(), e1, e2, e3, e4, e5, e6}); }
expr mk_heq_congr_fn();
bool is_heq_congr_fn(expr const & e);
inline expr mk_heq_congr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6, expr const & e7) { return mk_app({mk_heq_congr_fn(), e1, e2, e3, e4, e5, e6, e7}); }
expr mk_heq_congrl_fn();
bool is_heq_congrl_fn(expr const & e);
inline expr mk_heq_congrl_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({mk_heq_congrl_fn(), e1, e2, e3, e4, e5}); }
expr mk_heq_congrr_fn();
bool is_heq_congrr_fn(expr const & e);
inline expr mk_heq_congrr_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({mk_heq_congrr_fn(), e1, e2, e3, e4, e5}); }
expr mk_eqt_elim_fn(); expr mk_eqt_elim_fn();
bool is_eqt_elim_fn(expr const & e); bool is_eqt_elim_fn(expr const & e);
inline expr mk_eqt_elim_th(expr const & e1, expr const & e2) { return mk_app({mk_eqt_elim_fn(), e1, e2}); } inline expr mk_eqt_elim_th(expr const & e1, expr const & e2) { return mk_app({mk_eqt_elim_fn(), e1, e2}); }