chore(library/hott) clean up Equiv namespace
This commit is contained in:
parent
8e1949e9aa
commit
1f5be44f51
1 changed files with 18 additions and 16 deletions
|
@ -251,44 +251,46 @@ namespace IsEquiv
|
|||
end IsEquiv
|
||||
|
||||
namespace Equiv
|
||||
variables {A B C : Type} (eqf : A ≃ B)
|
||||
context
|
||||
parameters {A B : Type} (eqf : A ≃ B)
|
||||
|
||||
definition f : A → B := equiv_fun eqf
|
||||
private definition f : A → B := equiv_fun eqf
|
||||
private definition Hf [instance] : IsEquiv f := equiv_isequiv eqf
|
||||
|
||||
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
|
||||
|
||||
theorem compose (eqg: B ≃ C) : A ≃ C :=
|
||||
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf))
|
||||
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg))
|
||||
theorem compose {C : Type} (eqg: B ≃ C) : A ≃ C :=
|
||||
Equiv_mk ((equiv_fun eqg) ∘ f)
|
||||
(IsEquiv.comp_closed Hf (equiv_isequiv eqg))
|
||||
|
||||
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
|
||||
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq)
|
||||
Equiv_mk f' (IsEquiv.path_closed Hf Heq)
|
||||
|
||||
theorem inv_closed : B ≃ A :=
|
||||
Equiv_mk (@IsEquiv.inv _ _ (equiv_fun eqf) (equiv_isequiv eqf))
|
||||
(IsEquiv.inv_closed (equiv_isequiv eqf))
|
||||
Equiv_mk (IsEquiv.inv f) (IsEquiv.inv_closed Hf)
|
||||
|
||||
theorem cancel_L {f : A → B} {g : B → C}
|
||||
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
|
||||
Equiv_mk g (IsEquiv.cancel_R _ _)
|
||||
theorem cancel_R {C : Type} {g : B → C} (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
|
||||
Equiv_mk g (IsEquiv.cancel_R Hf _)
|
||||
|
||||
theorem cancel_R {f : A → B} {g : B → C}
|
||||
(Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B :=
|
||||
Equiv_mk f (!IsEquiv.cancel_L _ _)
|
||||
theorem cancel_L {C : Type} {g : C → A} (Hgf : IsEquiv (f ∘ g)) : C ≃ A :=
|
||||
Equiv_mk g (IsEquiv.cancel_L Hf _)
|
||||
|
||||
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
|
||||
Equiv_mk (transport P p) (IsEquiv.transport P p)
|
||||
|
||||
theorem contr_closed (HA: Contr A) : (Contr B) :=
|
||||
@IsEquiv.contr A B (equiv_fun eqf) (equiv_isequiv eqf) HA
|
||||
IsEquiv.contr Hf HA
|
||||
|
||||
-- calc enviroment
|
||||
-- TODO: find a transport lemma?
|
||||
-- theorem foo (P : Type → Type) : P A → P B := sorry
|
||||
-- calc_subst transport
|
||||
calc_trans compose
|
||||
--calc_trans Equiv.compose
|
||||
calc_refl id
|
||||
calc_symm inv_closed
|
||||
|
||||
end
|
||||
|
||||
end Equiv
|
||||
|
||||
namespace Equiv
|
||||
|
|
Loading…
Reference in a new issue