chore(library/hott) clean up Equiv namespace

This commit is contained in:
Jakob von Raumer 2014-11-06 11:49:20 -05:00 committed by Leonardo de Moura
parent 8e1949e9aa
commit 1f5be44f51

View file

@ -251,44 +251,46 @@ namespace IsEquiv
end IsEquiv end IsEquiv
namespace Equiv namespace Equiv
variables {A B C : Type} (eqf : A ≃ B) context
parameters {A B : Type} (eqf : A ≃ B)
definition f : A → B := equiv_fun eqf private definition f : A → B := equiv_fun eqf
private definition Hf [instance] : IsEquiv f := equiv_isequiv eqf
definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed
theorem compose (eqg: B ≃ C) : A ≃ C := theorem compose {C : Type} (eqg: B ≃ C) : A ≃ C :=
Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf)) Equiv_mk ((equiv_fun eqg) ∘ f)
(IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg)) (IsEquiv.comp_closed Hf (equiv_isequiv eqg))
theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B := theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B :=
Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq) Equiv_mk f' (IsEquiv.path_closed Hf Heq)
theorem inv_closed : B ≃ A := theorem inv_closed : B ≃ A :=
Equiv_mk (@IsEquiv.inv _ _ (equiv_fun eqf) (equiv_isequiv eqf)) Equiv_mk (IsEquiv.inv f) (IsEquiv.inv_closed Hf)
(IsEquiv.inv_closed (equiv_isequiv eqf))
theorem cancel_L {f : A → B} {g : B → C} theorem cancel_R {C : Type} {g : B → C} (Hgf : IsEquiv (g ∘ f)) : B ≃ C :=
(Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C := Equiv_mk g (IsEquiv.cancel_R Hf _)
Equiv_mk g (IsEquiv.cancel_R _ _)
theorem cancel_R {f : A → B} {g : B → C} theorem cancel_L {C : Type} {g : C → A} (Hgf : IsEquiv (f ∘ g)) : C ≃ A :=
(Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B := Equiv_mk g (IsEquiv.cancel_L Hf _)
Equiv_mk f (!IsEquiv.cancel_L _ _)
theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) := theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) :=
Equiv_mk (transport P p) (IsEquiv.transport P p) Equiv_mk (transport P p) (IsEquiv.transport P p)
theorem contr_closed (HA: Contr A) : (Contr B) := theorem contr_closed (HA: Contr A) : (Contr B) :=
@IsEquiv.contr A B (equiv_fun eqf) (equiv_isequiv eqf) HA IsEquiv.contr Hf HA
-- calc enviroment -- calc enviroment
-- TODO: find a transport lemma? -- TODO: find a transport lemma?
-- theorem foo (P : Type → Type) : P A → P B := sorry
-- calc_subst transport -- calc_subst transport
calc_trans compose --calc_trans Equiv.compose
calc_refl id calc_refl id
calc_symm inv_closed calc_symm inv_closed
end
end Equiv end Equiv
namespace Equiv namespace Equiv