test(tests/lean/run): fibonacci using well_founded recursion

This commit is contained in:
Leonardo de Moura 2014-11-10 12:46:55 -08:00
parent 50973bb4f3
commit 1f92751c4d

View file

@ -0,0 +1,28 @@
import data.nat
open nat eq.ops
definition fib.F (n : nat) : (Π (m : nat), m < n → nat) → nat :=
nat.cases_on n
(λ (f : Π (m : nat), m < zero → nat), succ zero)
(λ (n₁ : nat), nat.cases_on n₁
(λ (f : Π (m : nat), m < (succ zero) → nat), succ zero)
(λ (n₂ : nat) (f : Π (m : nat), m < (succ (succ n₂)) → nat),
have l₁ : succ n₂ < succ (succ n₂), from self_lt_succ (succ n₂),
have l₂ : n₂ < succ (succ n₂), from lt_trans (self_lt_succ n₂) l₁,
f (succ n₂) l₁ + f n₂ l₂))
definition fib (n : nat) :=
well_founded.fix fib.F n
theorem fib.zero_eq : fib 0 = 1 :=
well_founded.fix_eq fib.F 0
theorem fib.one_eq : fib 1 = 1 :=
well_founded.fix_eq fib.F 1
theorem fib.succ_succ_eq (n : nat) : fib (succ (succ n)) = fib (succ n) + fib n :=
well_founded.fix_eq fib.F (succ (succ n))
eval fib 5 -- ignores opaque annotations
eval fib 6
eval [strict] fib 5 -- take opaque/irreducible annotations into account