test(tests/lean/run): add more tests from algebra
This commit is contained in:
parent
48de943678
commit
2090e9124c
1 changed files with 49 additions and 0 deletions
49
tests/lean/run/blast_ematch8.lean
Normal file
49
tests/lean/run/blast_ematch8.lean
Normal file
|
@ -0,0 +1,49 @@
|
|||
import algebra.group
|
||||
open algebra
|
||||
|
||||
variables {A : Type}
|
||||
variables [s : group A]
|
||||
include s
|
||||
|
||||
set_option blast.ematch true
|
||||
set_option blast.subst false
|
||||
set_option blast.simp false
|
||||
attribute inv_inv mul.left_inv mul.assoc one_mul mul_one [forward]
|
||||
|
||||
theorem mul.right_inv (a : A) : a * a⁻¹ = 1 :=
|
||||
calc
|
||||
a * a⁻¹ = (a⁻¹)⁻¹ * a⁻¹ : by blast
|
||||
... = 1 : by blast
|
||||
|
||||
theorem mul.right_inv₂ (a : A) : a * a⁻¹ = 1 :=
|
||||
by blast
|
||||
|
||||
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) = b :=
|
||||
calc
|
||||
a * (a⁻¹ * b) = a * a⁻¹ * b : by blast
|
||||
... = 1 * b : by blast
|
||||
... = b : by blast
|
||||
|
||||
theorem mul_inv_cancel_left₂ (a b : A) : a * (a⁻¹ * b) = b :=
|
||||
by blast
|
||||
|
||||
theorem mul_inv (a b : A) : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
|
||||
inv_eq_of_mul_eq_one
|
||||
(calc
|
||||
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : by blast
|
||||
... = 1 : by blast)
|
||||
|
||||
theorem eq_of_mul_inv_eq_one {a b : A} (H : a * b⁻¹ = 1) : a = b :=
|
||||
calc
|
||||
a = a * b⁻¹ * b : by blast
|
||||
... = 1 * b : by blast
|
||||
... = b : by blast
|
||||
|
||||
|
||||
-- This is another theorem that can be easily proved using superposition,
|
||||
-- but cannot to be proved using E-matching.
|
||||
-- To prove it using E-matching, we must provide the following auxiliary step using calc.
|
||||
theorem eq_of_mul_inv_eq_one₂ {a b : A} (H : a * b⁻¹ = 1) : a = b :=
|
||||
calc
|
||||
a = a * b⁻¹ * b : by blast
|
||||
... = b : by blast
|
Loading…
Reference in a new issue