diff --git a/library/data/set/basic.lean b/library/data/set/basic.lean index 3b962d5c2..92160cd5d 100644 --- a/library/data/set/basic.lean +++ b/library/data/set/basic.lean @@ -18,19 +18,22 @@ definition mem [reducible] (x : X) (a : set X) := a x infix `∈` := mem notation a ∉ b := ¬ mem a b -theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := +theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix `⊆` := subset +definition superset [reducible] (s t : set X) : Prop := t ⊆ s +infix `⊇` := superset + theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H -theorem subset.trans (a b c : set X) (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := +theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := -setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) +ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ @@ -55,6 +58,10 @@ abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r +theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) : + ∃₀ x ∈ s, P x := +exists.intro x (and.intro xs Px) + /- empty set -/ definition empty [reducible] : set X := λx, false @@ -66,7 +73,7 @@ assume H : x ∈ ∅, H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := -setext (take x, iff.intro +ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe !not_mem_empty)) @@ -91,6 +98,14 @@ theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) +theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial + +theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := +eq_of_subset_of_subset (subset_univ s) H + +theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := +ext (take x, iff.intro (assume H', trivial) (assume H', H x)) + /- union -/ definition union [reducible] (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b @@ -107,19 +122,19 @@ theorem mem_union_of_mem_right {x : X} {b : set X} (a : set X) : x ∈ b → x assume h, or.inr h theorem union_self (a : set X) : a ∪ a = a := -setext (take x, !or_self) +ext (take x, !or_self) theorem union_empty (a : set X) : a ∪ ∅ = a := -setext (take x, !or_false) +ext (take x, !or_false) theorem empty_union (a : set X) : ∅ ∪ a = a := -setext (take x, !false_or) +ext (take x, !false_or) theorem union.comm (a b : set X) : a ∪ b = b ∪ a := -setext (take x, or.comm) +ext (take x, or.comm) theorem union.assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := -setext (take x, or.assoc) +ext (take x, or.assoc) theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ @@ -127,6 +142,13 @@ theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ +theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H + +theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H + +theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := +λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt) + /- intersection -/ definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b @@ -137,19 +159,19 @@ theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem inter_self (a : set X) : a ∩ a = a := -setext (take x, !and_self) +ext (take x, !and_self) theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := -setext (take x, !and_false) +ext (take x, !and_false) theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := -setext (take x, !false_and) +ext (take x, !false_and) theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := -setext (take x, !and.comm) +ext (take x, !and.comm) theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := -setext (take x, !and.assoc) +ext (take x, !and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ @@ -158,24 +180,31 @@ theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = ( !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_univ (a : set X) : a ∩ univ = a := -setext (take x, !and_true) +ext (take x, !and_true) theorem univ_inter (a : set X) : univ ∩ a = a := -setext (take x, !true_and) +ext (take x, !true_and) + +theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H + +theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H + +theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := +λ x xr, and.intro (rs xr) (rt xr) /- distributivity laws -/ theorem inter.distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := -setext (take x, !and.left_distrib) +ext (take x, !and.left_distrib) theorem inter.distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := -setext (take x, !and.right_distrib) +ext (take x, !and.right_distrib) theorem union.distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := -setext (take x, !or.left_distrib) +ext (take x, !or.left_distrib) theorem union.distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := -setext (take x, !or.right_distrib) +ext (take x, !or.right_distrib) /- set-builder notation -/ @@ -214,21 +243,26 @@ propext (iff.intro !eq_or_mem_of_mem_insert (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := -setext (λ x, eq.substr (mem_insert_eq x a s) +ext (λ x, eq.substr (mem_insert_eq x a s) (or_iff_right_of_imp (λH1, eq.substr H1 H))) theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := -setext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) +ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y := assume h, or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this !not_mem_empty) +theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b := +iff.intro + (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) + (assume aeqb, or.inl aeqb) + /- separation -/ theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := -setext (take x, iff.intro +ext (take x, iff.intro (suppose x ∈ s, and.intro (ssubt this) this) (suppose x ∈ {x ∈ t | x ∈ s}, and.right this)) @@ -253,7 +287,7 @@ theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t := -setext (take x, iff.intro +ext (take x, iff.intro (assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2)) (assume H1 : x ∈ t, decidable.by_cases diff --git a/library/init/reserved_notation.lean b/library/init/reserved_notation.lean index e3c59b15f..6af3efffa 100644 --- a/library/init/reserved_notation.lean +++ b/library/init/reserved_notation.lean @@ -88,6 +88,7 @@ reserve infix `∉`:50 reserve infixl `∩`:70 reserve infixl `∪`:65 reserve infix `⊆`:50 +reserve infix `⊇`:50 /- other symbols -/ diff --git a/library/theories/group_theory/subgroup.lean b/library/theories/group_theory/subgroup.lean index 133ccb2fa..f0edb7aed 100644 --- a/library/theories/group_theory/subgroup.lean +++ b/library/theories/group_theory/subgroup.lean @@ -182,7 +182,7 @@ lemma closed_lcontract_set a (H G : set A) : mul_closed_on G → H ⊆ G → a assert PaGsubG : a ∘> G ⊆ G, from closed_lcontract a G Pclosed PainG, assert PaHsubaG : a ∘> H ⊆ a ∘> G, from eq.symm (glcoset_eq_lcoset a H) ▸ eq.symm (glcoset_eq_lcoset a G) ▸ (coset.l_sub a H G PHsubG), - subset.trans _ _ _ PaHsubaG PaGsubG + subset.trans PaHsubaG PaGsubG definition subgroup.has_inv H := ∀ (a : A), a ∈ H → a⁻¹ ∈ H -- two ways to define the same equivalence relatiohship for subgroups definition in_lcoset [reducible] H (a b : A) := a ∈ b ∘> H