feat(library/tactic/apply_tactic): perform class-instance resolution in the apply tactic

closes #360
This commit is contained in:
Leonardo de Moura 2015-02-06 16:14:03 -08:00
parent 18808d133e
commit 2126b8ec9a
3 changed files with 58 additions and 10 deletions

View file

@ -20,8 +20,10 @@ Author: Leonardo de Moura
#include "library/constants.h" #include "library/constants.h"
#include "library/metavar_closure.h" #include "library/metavar_closure.h"
#include "library/type_util.h" #include "library/type_util.h"
#include "library/local_context.h"
#include "library/tactic/expr_to_tactic.h" #include "library/tactic/expr_to_tactic.h"
#include "library/tactic/apply_tactic.h" #include "library/tactic/apply_tactic.h"
#include "library/tactic/class_instance_synth.h"
namespace lean { namespace lean {
/** /**
@ -61,15 +63,19 @@ static proof_state_seq apply_tactic_core(environment const & env, io_state const
if (empty(gs)) if (empty(gs))
return proof_state_seq(); return proof_state_seq();
name_generator ngen = s.get_ngen(); name_generator ngen = s.get_ngen();
std::shared_ptr<type_checker> tc(mk_type_checker(env, ngen.mk_child(), s.relax_main_opaque())); bool relax_opaque = s.relax_main_opaque();
goal g = head(gs); std::shared_ptr<type_checker> tc(mk_type_checker(env, ngen.mk_child(), relax_opaque));
goals tail_gs = tail(gs); goal g = head(gs);
expr t = g.get_type(); goals tail_gs = tail(gs);
expr e = _e; expr t = g.get_type();
auto e_t_cs = tc->infer(e); expr e = _e;
auto e_t_cs = tc->infer(e);
e_t_cs.second.linearize(cs); e_t_cs.second.linearize(cs);
expr e_t = e_t_cs.first; expr e_t = e_t_cs.first;
buffer<expr> metas; buffer<expr> metas;
local_context ctx;
bool initialized_ctx = false;
unifier_config cfg(ios.get_options());
if (add_meta) { if (add_meta) {
// unsigned num_t = get_expect_num_args(*tc, t); // unsigned num_t = get_expect_num_args(*tc, t);
unsigned num_e_t = get_expect_num_args(*tc, e_t); unsigned num_e_t = get_expect_num_args(*tc, e_t);
@ -80,19 +86,34 @@ static proof_state_seq apply_tactic_core(environment const & env, io_state const
auto e_t_cs = tc->whnf(e_t); auto e_t_cs = tc->whnf(e_t);
e_t_cs.second.linearize(cs); e_t_cs.second.linearize(cs);
e_t = e_t_cs.first; e_t = e_t_cs.first;
expr meta = g.mk_meta(ngen.next(), binding_domain(e_t)); expr meta;
if (binding_info(e_t).is_inst_implicit()) {
if (!initialized_ctx) {
ctx = g.to_local_context();
initialized_ctx = true;
}
bool use_local_insts = true;
bool is_strict = false;
auto mc = mk_class_instance_elaborator(
env, ios, ctx, ngen.next(), optional<name>(),
relax_opaque, use_local_insts, is_strict,
some_expr(binding_domain(e_t)), e.get_tag(), cfg, nullptr);
meta = mc.first;
cs.push_back(mc.second);
} else {
meta = g.mk_meta(ngen.next(), binding_domain(e_t));
}
e = mk_app(e, meta); e = mk_app(e, meta);
e_t = instantiate(binding_body(e_t), meta); e_t = instantiate(binding_body(e_t), meta);
metas.push_back(meta); metas.push_back(meta);
} }
} }
metavar_closure cls(t); metavar_closure cls(t);
cls.mk_constraints(s.get_subst(), justification(), s.relax_main_opaque()); cls.mk_constraints(s.get_subst(), justification(), relax_opaque);
pair<bool, constraint_seq> dcs = tc->is_def_eq(t, e_t); pair<bool, constraint_seq> dcs = tc->is_def_eq(t, e_t);
if (!dcs.first) if (!dcs.first)
return proof_state_seq(); return proof_state_seq();
dcs.second.linearize(cs); dcs.second.linearize(cs);
unifier_config cfg(ios.get_options());
unify_result_seq rseq = unify(env, cs.size(), cs.data(), ngen.mk_child(), s.get_subst(), cfg); unify_result_seq rseq = unify(env, cs.size(), cs.data(), ngen.mk_child(), s.get_subst(), cfg);
list<expr> meta_lst = to_list(metas.begin(), metas.end()); list<expr> meta_lst = to_list(metas.begin(), metas.end());
return map2<proof_state>(rseq, [=](pair<substitution, constraints> const & p) -> proof_state { return map2<proof_state>(rseq, [=](pair<substitution, constraints> const & p) -> proof_state {

View file

@ -0,0 +1,17 @@
open truncation
--structure is_contr [class] (A : Type) : Type
context
parameters {P : Π(A : Type), A → Type}
definition my_contr {A : Type} [H : is_contr A] (a : A) : P A a := sorry
definition foo2
(A : Type)
(B : A → Type)
(a : A)
(x : B a)
(H : Π (a : A), is_contr (B a)) --(H : is_contr (B a))
: P (B a) x :=
by apply my_contr
end

10
tests/lean/run/360_1.lean Normal file
View file

@ -0,0 +1,10 @@
structure is_tr [class] (A : Type) : Type :=
(x : A)
theorem foo (B : Type) [H : is_tr B] : B :=
sorry
theorem bar (A : Type) (H : is_tr A) : A :=
begin
apply foo
end