feat(library/tactic): make let tactic transparent, introduce new opaque note tactic

The new let tactic is semantically equivalent to let terms, while `note`
preserves its old opaque behavior.
This commit is contained in:
Sebastian Ullrich 2015-12-10 19:37:55 +01:00 committed by Leonardo de Moura
parent 31c9a76777
commit 2185ee7e95
33 changed files with 97 additions and 82 deletions

View file

@ -124,12 +124,12 @@ namespace category
fapply nat_trans.mk: esimp, fapply nat_trans.mk: esimp,
{ intro c, exact natural_map (to_hom θ) (c, F c) id}, { intro c, exact natural_map (to_hom θ) (c, F c) id},
{ intro c c' f, { intro c c' f,
let H := naturality (to_hom θ) (ID c, F f), note H := naturality (to_hom θ) (ID c, F f),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right], rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right],
clear H K, clear H K,
let H := naturality (to_hom θ) (f, ID (F c')), note H := naturality (to_hom θ) (f, ID (F c')),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, respect_id at K,+id_left at K, K]} rewrite [▸* at K, respect_id at K,+id_left at K, K]}
end end
@ -138,12 +138,12 @@ namespace category
fapply nat_trans.mk: esimp, fapply nat_trans.mk: esimp,
{ intro d, exact natural_map (to_inv θ) (G d, d) id, }, { intro d, exact natural_map (to_inv θ) (G d, d) id, },
{ intro d d' g, { intro d d' g,
let H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'), note H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left], rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left],
clear H K, clear H K,
let H := naturality (to_inv θ) (ID (G d), g), note H := naturality (to_inv θ) (ID (G d), g),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, respect_id at K,+id_right at K, K]} rewrite [▸* at K, respect_id at K,+id_right at K, K]}
end end
@ -151,8 +151,8 @@ namespace category
: natural_map (to_hom θ) (c, d) f = G f ∘ adj_unit c := : natural_map (to_hom θ) (c, d) f = G f ∘ adj_unit c :=
begin begin
esimp, esimp,
let H := naturality (to_hom θ) (ID c, f), note H := naturality (to_hom θ) (ID c, f),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, id_right at K, K, respect_id, +id_right], rewrite [▸* at K, id_right at K, K, respect_id, +id_right],
end end
@ -160,8 +160,8 @@ namespace category
: natural_map (to_inv θ) (c, d) g = adj_counit d ∘ F g := : natural_map (to_inv θ) (c, d) g = adj_counit d ∘ F g :=
begin begin
esimp, esimp,
let H := naturality (to_inv θ) (g, ID d), note H := naturality (to_inv θ) (g, ID d),
let K := ap10 H id, note K := ap10 H id,
rewrite [▸* at K, id_left at K, K, respect_id, +id_left], rewrite [▸* at K, id_left at K, K, respect_id, +id_left],
end end

View file

@ -109,7 +109,7 @@ namespace eq
begin begin
rewrite [apdo_eq_apdo_ap _ _ p], rewrite [apdo_eq_apdo_ap _ _ p],
let y := !change_path_of_pathover (apdo (apdo id) (ap_constant p b))⁻¹ᵒ, let y := !change_path_of_pathover (apdo (apdo id) (ap_constant p b))⁻¹ᵒ,
rewrite -y, esimp, clear y, rewrite -y, esimp,
refine !pathover_ap_pathover_of_pathover_ap ⬝ _, refine !pathover_ap_pathover_of_pathover_ap ⬝ _,
rewrite pathover_ap_change_path, rewrite pathover_ap_change_path,
rewrite -change_path_con, apply ap (λx, change_path x idpo), rewrite -change_path_con, apply ap (λx, change_path x idpo),

View file

@ -146,7 +146,7 @@ namespace eq
(pathover_idp_of_eq l) (pathover_idp_of_eq l)
(pathover_idp_of_eq r)) : square t b l r := (pathover_idp_of_eq r)) : square t b l r :=
begin begin
let H := square_of_squareover so, -- use apply ... in note H := square_of_squareover so, -- use apply ... in
rewrite [▸* at H,+idp_con at H,+ap_id at H,↑pathover_idp_of_eq at H], rewrite [▸* at H,+idp_con at H,+ap_id at H,↑pathover_idp_of_eq at H],
rewrite [+to_right_inv !(pathover_equiv_tr_eq (refl a)) at H], rewrite [+to_right_inv !(pathover_equiv_tr_eq (refl a)) at H],
exact H exact H
@ -230,7 +230,7 @@ namespace eq
definition eq_of_vdeg_squareover {q₁₀' : b₀₀ =[p₁₀] b₂₀} definition eq_of_vdeg_squareover {q₁₀' : b₀₀ =[p₁₀] b₂₀}
(p : squareover B vrfl q₁₀ q₁₀' idpo idpo) : q₁₀ = q₁₀' := (p : squareover B vrfl q₁₀ q₁₀' idpo idpo) : q₁₀ = q₁₀' :=
begin begin
let H := square_of_squareover p, -- use apply ... in note H := square_of_squareover p, -- use apply ... in
induction p₁₀, -- if needed we can remove this induction and use con_tr_idp in types/eq2 induction p₁₀, -- if needed we can remove this induction and use con_tr_idp in types/eq2
rewrite [▸* at H,idp_con at H,+ap_id at H], rewrite [▸* at H,idp_con at H,+ap_id at H],
let H' := eq_of_vdeg_square H, let H' := eq_of_vdeg_square H,

View file

@ -263,7 +263,7 @@ namespace circle
induction x, induction x,
{ apply base_eq_base_equiv}, { apply base_eq_base_equiv},
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq, { apply equiv_pathover, intro p p' q, apply pathover_of_eq,
let H := eq_of_square (square_of_pathover q), note H := eq_of_square (square_of_pathover q),
rewrite con_comm_base at H, rewrite con_comm_base at H,
let H' := cancel_left H, let H' := cancel_left H,
induction H', reflexivity} induction H', reflexivity}

View file

@ -128,7 +128,7 @@ namespace join
(c : cube s₀₁₁ vrfl s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : (c : cube s₀₁₁ vrfl s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₁₁₂⁻¹ᵛ vrfl (massage_sq s₁₀₁) (massage_sq s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ := cube s₁₁₂⁻¹ᵛ vrfl (massage_sq s₁₀₁) (massage_sq s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
begin begin
cases p₁₀₀, cases p₁₀₂, cases p₁₂₂, let c' := massage_cube' c, esimp[massage_sq], cases p₁₀₀, cases p₁₀₂, cases p₁₂₂, note c' := massage_cube' c, esimp[massage_sq],
krewrite vdeg_v_eq_ph_pv_hp at c', exact c', krewrite vdeg_v_eq_ph_pv_hp at c', exact c',
end end

View file

@ -188,7 +188,7 @@ namespace is_trunc
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base := (a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
begin begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a, let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
let H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H', note H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H',
assert p : (f = pmap.mk (λx, f base) (respect_pt f)), assert p : (f = pmap.mk (λx, f base) (respect_pt f)),
apply is_hprop.elim, apply is_hprop.elim,
exact ap10 (ap pmap.map p) x exact ap10 (ap pmap.map p) x

View file

@ -126,7 +126,7 @@ definition change (e : expr) : tactic := builtin
definition assert_hypothesis (id : identifier) (e : expr) : tactic := builtin definition assert_hypothesis (id : identifier) (e : expr) : tactic := builtin
definition lettac (id : identifier) (e : expr) : tactic := builtin definition notetac (id : identifier) (e : expr) : tactic := builtin
definition constructor (k : option num) : tactic := builtin definition constructor (k : option num) : tactic := builtin
definition fconstructor (k : option num) : tactic := builtin definition fconstructor (k : option num) : tactic := builtin

View file

@ -52,10 +52,10 @@ namespace univ
intro f, intro f,
have u : ¬¬bool, by exact (λg, g tt), have u : ¬¬bool, by exact (λg, g tt),
let H1 := apdo f eq_bnot, let H1 := apdo f eq_bnot,
let H2 := apo10 H1 u, note H2 := apo10 H1 u,
have p : eq_bnot ▸ u = u, from !is_hprop.elim, have p : eq_bnot ▸ u = u, from !is_hprop.elim,
rewrite p at H2, rewrite p at H2,
let H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700 note H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700
exact absurd H3 (bnot_ne (f bool u)), exact absurd H3 (bnot_ne (f bool u)),
end end

View file

@ -388,7 +388,7 @@ theorem exists_least_of_bdd {P : → Prop} [HP : decidable_pred P]
have Hzbk : z = b + of_nat (nat_abs (z - b)), have Hzbk : z = b + of_nat (nat_abs (z - b)),
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), int.add_comm, sub_add_cancel], by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), int.add_comm, sub_add_cancel],
have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin
let Hz' := iff.mp !lt_add_iff_sub_lt_left Hz, note Hz' := iff.mp !lt_add_iff_sub_lt_left Hz,
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply lt_of_of_nat_lt_of_nat Hz' apply lt_of_of_nat_lt_of_nat Hz'
end, end,
@ -426,7 +426,7 @@ theorem exists_greatest_of_bdd {P : → Prop} [HP : decidable_pred P]
have Hzbk : z = b - of_nat (nat_abs (b - z)), have Hzbk : z = b - of_nat (nat_abs (b - z)),
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), sub_sub_self], by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), sub_sub_self],
have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin
let Hz' := iff.mp !lt_add_iff_sub_lt_left (iff.mpr !lt_add_iff_sub_lt_right Hz), note Hz' := iff.mp !lt_add_iff_sub_lt_left (iff.mpr !lt_add_iff_sub_lt_right Hz),
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply lt_of_of_nat_lt_of_nat Hz' apply lt_of_of_nat_lt_of_nat Hz'
end, end,

View file

@ -36,8 +36,8 @@ private theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq :
(H : n ≥ pceil (q / ε)) : (H : n ≥ pceil (q / ε)) :
q * n⁻¹ ≤ ε := q * n⁻¹ ≤ ε :=
begin begin
let H2 := pceil_helper H (div_pos_of_pos_of_pos Hq Hε), note H2 := pceil_helper H (div_pos_of_pos_of_pos Hq Hε),
let H3 := mul_le_of_le_div (div_pos_of_pos_of_pos Hq Hε) H2, note H3 := mul_le_of_le_div (div_pos_of_pos_of_pos Hq Hε) H2,
rewrite -(one_mul ε), rewrite -(one_mul ε),
apply mul_le_mul_of_mul_div_le, apply mul_le_mul_of_mul_div_le,
repeat assumption repeat assumption
@ -138,7 +138,7 @@ private theorem factor_lemma (a b c d e : ) : abs (a + b + c - (d + (b + e)))
private theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) := private theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) :=
begin begin
let H := (binary.comm4 add.comm add.assoc a b c d), note H := (binary.comm4 add.comm add.assoc a b c d),
rewrite [add.comm b d at H], rewrite [add.comm b d at H],
exact H exact H
end end
@ -773,7 +773,7 @@ theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t)
... = b + d + a + e + c : add.comm, ... = b + d + a + e + c : add.comm,
apply eq_of_bdd Hs Ht, apply eq_of_bdd Hs Ht,
intros, intros,
let He := bdd_of_eq H, note He := bdd_of_eq H,
existsi 2 * (2 * (2 * j)), existsi 2 * (2 * (2 * j)),
intros n Hn, intros n Hn,
rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))), rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))),
@ -908,7 +908,7 @@ theorem zero_nequiv_one : ¬ zero ≡ one :=
begin begin
intro Hz, intro Hz,
rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz], rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz],
let H := Hz (2 * 2), note H := Hz (2 * 2),
rewrite [zero_sub at H, abs_neg at H, pnat.add_halves at H], rewrite [zero_sub at H, abs_neg at H, pnat.add_halves at H],
have H' : pone⁻¹ ≤ 2⁻¹, from calc have H' : pone⁻¹ ≤ 2⁻¹, from calc
pone⁻¹ = 1 : by rewrite -pone_inv pone⁻¹ = 1 : by rewrite -pone_inv

View file

@ -472,7 +472,7 @@ theorem le_ceil (x : ) : x ≤ ceil x :=
theorem lt_of_lt_ceil {x : } {z : } (Hz : z < ceil x) : z < x := theorem lt_of_lt_ceil {x : } {z : } (Hz : z < ceil x) : z < x :=
begin begin
rewrite ↑ceil at Hz, rewrite ↑ceil at Hz,
let Hz' := lt_of_floor_lt (iff.mp !lt_neg_iff_lt_neg Hz), note Hz' := lt_of_floor_lt (iff.mp !lt_neg_iff_lt_neg Hz),
rewrite [of_int_neg at Hz'], rewrite [of_int_neg at Hz'],
apply lt_of_neg_lt_neg Hz' apply lt_of_neg_lt_neg Hz'
end end
@ -482,10 +482,10 @@ theorem floor_succ (x : ) : floor (x + 1) = floor x + 1 :=
apply by_contradiction, apply by_contradiction,
intro H, intro H,
cases lt_or_gt_of_ne H with [Hgt, Hlt], cases lt_or_gt_of_ne H with [Hgt, Hlt],
let Hl := lt_of_floor_lt Hgt, note Hl := lt_of_floor_lt Hgt,
rewrite [of_int_add at Hl], rewrite [of_int_add at Hl],
apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le, apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le,
let Hl := lt_of_floor_lt (iff.mp !add_lt_iff_lt_sub_right Hlt), note Hl := lt_of_floor_lt (iff.mp !add_lt_iff_lt_sub_right Hlt),
rewrite [of_int_sub at Hl], rewrite [of_int_sub at Hl],
apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le
end end
@ -844,7 +844,7 @@ private theorem regular_lemma (s : seq) (H : ∀ n i : +, i ≥ n → under_s
intros, intros,
cases em (m ≤ n) with [Hm, Hn], cases em (m ≤ n) with [Hm, Hn],
apply regular_lemma_helper Hm H, apply regular_lemma_helper Hm H,
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H, note T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
rewrite [abs_sub at T, {n⁻¹ + _}add.comm at T], rewrite [abs_sub at T, {n⁻¹ + _}add.comm at T],
exact T exact T
end end

View file

@ -404,7 +404,7 @@ theorem inv_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s
s_inv Hs ≡ s_inv Ht := s_inv Hs ≡ s_inv Ht :=
if Hsep : sep s zero then if Hsep : sep s zero then
(begin (begin
let Hsept := sep_of_equiv_sep Hs Ht Heq Hsep, note Hsept := sep_of_equiv_sep Hs Ht Heq Hsep,
have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin
apply mul_well_defined, apply mul_well_defined,
repeat (assumption | apply reg_inv_reg), repeat (assumption | apply reg_inv_reg),
@ -462,15 +462,15 @@ theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t
intro m, intro m,
apply by_contradiction, apply by_contradiction,
intro Hm, intro Hm,
let Hm' := lt_of_not_ge Hm, note Hm' := lt_of_not_ge Hm,
let Hex'' := exists.intro m Hm', note Hex'' := exists.intro m Hm',
apply Hex Hex'' apply Hex Hex''
end, end,
apply H Hex' apply H Hex'
end, end,
eapply exists.elim H', eapply exists.elim H',
intro m Hm, intro m Hm,
let Hm' := neg_lt_neg Hm, note Hm' := neg_lt_neg Hm,
rewrite neg_neg at Hm', rewrite neg_neg at Hm',
apply s_nonneg_of_pos, apply s_nonneg_of_pos,
rotate 1, rotate 1,

View file

@ -236,7 +236,7 @@ theorem s_neg_add_eq_s_add_neg (s t : seq) : sneg (sadd s t) ≡ sadd (sneg s) (
theorem equiv_cancel_middle {s t u : seq} (Hs : regular s) (Ht : regular t) theorem equiv_cancel_middle {s t u : seq} (Hs : regular s) (Ht : regular t)
(Hu : regular u) : sadd (sadd u t) (sneg (sadd u s)) ≡ sadd t (sneg s) := (Hu : regular u) : sadd (sadd u t) (sneg (sadd u s)) ≡ sadd t (sneg s) :=
begin begin
let Hz := zero_is_reg, note Hz := zero_is_reg,
apply equiv.trans, apply equiv.trans,
rotate 3, rotate 3,
apply add_well_defined, apply add_well_defined,
@ -308,7 +308,7 @@ protected theorem le_trans {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu :
(Lst : s_le s t) (Ltu : s_le t u) : s_le s u := (Lst : s_le s t) (Ltu : s_le t u) : s_le s u :=
begin begin
rewrite ↑s_le at *, rewrite ↑s_le at *,
let Rz := zero_is_reg, note Rz := zero_is_reg,
have Hsum : nonneg (sadd (sadd u (sneg t)) (sadd t (sneg s))), have Hsum : nonneg (sadd (sadd u (sneg t)) (sadd t (sneg s))),
from rat_seq.add_nonneg_of_nonneg Ltu Lst, from rat_seq.add_nonneg_of_nonneg Ltu Lst,
have H' : nonneg (sadd (sadd u (sadd (sneg t) t)) (sneg s)), begin have H' : nonneg (sadd (sadd u (sadd (sneg t) t)) (sneg s)), begin
@ -384,7 +384,7 @@ theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_
cases Lst with [N, HN], cases Lst with [N, HN],
let Rns := reg_neg_reg Hs, let Rns := reg_neg_reg Hs,
let Rtns := reg_add_reg Ht Rns, let Rtns := reg_add_reg Ht Rns,
let Habs := sub_le_of_abs_sub_le_right (Rtns N n), note Habs := sub_le_of_abs_sub_le_right (Rtns N n),
rewrite [sub_add_eq_sub_sub at Habs], rewrite [sub_add_eq_sub_sub at Habs],
exact (calc exact (calc
sadd t (sneg s) n ≥ sadd t (sneg s) N - N⁻¹ - n⁻¹ : Habs sadd t (sneg s) n ≥ sadd t (sneg s) N - N⁻¹ - n⁻¹ : Habs
@ -401,14 +401,14 @@ theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_
theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le s t ∧ sep s t) : theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le s t ∧ sep s t) :
s_lt s t := s_lt s t :=
begin begin
let Le := and.left H, note Le := and.left H,
cases and.right H with [P, Hlt], cases and.right H with [P, Hlt],
exact P, exact P,
rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt], rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt],
apply exists.elim Hlt, apply exists.elim Hlt,
intro N HN, intro N HN,
let LeN := Le N, let LeN := Le N,
let HN' := (iff.mpr !neg_lt_neg_iff_lt) HN, note HN' := (iff.mpr !neg_lt_neg_iff_lt) HN,
rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'], rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'],
let HN'' := not_le_of_gt HN', let HN'' := not_le_of_gt HN',
apply absurd LeN HN'' apply absurd LeN HN''
@ -652,8 +652,8 @@ theorem s_mul_nonneg_of_nonneg {s t : seq} (Hs : regular s) (Ht : regular t)
theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t) theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(Hzs : s_le zero s) (Hzt : s_le zero t) : s_le zero (smul s t) := (Hzs : s_le zero s) (Hzt : s_le zero t) : s_le zero (smul s t) :=
begin begin
let Hzs' := s_nonneg_of_ge_zero Hs Hzs, note Hzs' := s_nonneg_of_ge_zero Hs Hzs,
let Htz' := s_nonneg_of_ge_zero Ht Hzt, note Htz' := s_nonneg_of_ge_zero Ht Hzt,
apply s_ge_zero_of_nonneg, apply s_ge_zero_of_nonneg,
rotate 1, rotate 1,
apply s_mul_nonneg_of_nonneg, apply s_mul_nonneg_of_nonneg,

View file

@ -130,7 +130,7 @@ definition change (e : expr) : tactic := builtin
definition assert_hypothesis (id : identifier) (e : expr) : tactic := builtin definition assert_hypothesis (id : identifier) (e : expr) : tactic := builtin
definition lettac (id : identifier) (e : expr) : tactic := builtin definition notetac (id : identifier) (e : expr) : tactic := builtin
definition constructor (k : option num) : tactic := builtin definition constructor (k : option num) : tactic := builtin
definition fconstructor (k : option num) : tactic := builtin definition fconstructor (k : option num) : tactic := builtin

View file

@ -544,7 +544,7 @@ theorem pos_on_nbhd_of_cts_of_pos {f : } (Hf : continuous f) {b :
exact and.left Hδ, exact and.left Hδ,
intro y Hy, intro y Hy,
let Hy' := and.right Hδ y Hy, let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_right Hy', note Hlt := sub_lt_of_abs_sub_lt_right Hy',
rewrite sub_self at Hlt, rewrite sub_self at Hlt,
assumption assumption
end end
@ -560,7 +560,7 @@ theorem neg_on_nbhd_of_cts_of_neg {f : } (Hf : continuous f) {b :
intro y Hy, intro y Hy,
let Hy' := and.right Hδ y Hy, let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_left Hy', let Hlt := sub_lt_of_abs_sub_lt_left Hy',
let Hlt' := lt_add_of_sub_lt_right Hlt, note Hlt' := lt_add_of_sub_lt_right Hlt,
rewrite [-sub_eq_add_neg at Hlt', sub_self at Hlt'], rewrite [-sub_eq_add_neg at Hlt', sub_self at Hlt'],
assumption assumption
end end
@ -780,7 +780,7 @@ theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
intro Hxgt, intro Hxgt,
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt, have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt,
krewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt', krewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt',
let Hxgt'' := and.right Hδ _ Hxgt', note Hxgt'' := and.right Hδ _ Hxgt',
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)}, exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
{exact sup_fn_interval} {exact sup_fn_interval}
end end

View file

@ -57,7 +57,7 @@ gcd.induction x y
assume npos : 0 < n, assume npos : 0 < n,
assume IH, assume IH,
begin begin
let H := egcd_of_pos m npos, esimp at H, note H := egcd_of_pos m npos, esimp at H,
rewrite H, rewrite H,
esimp, esimp,
rewrite [gcd_rec, -IH], rewrite [gcd_rec, -IH],

View file

@ -156,7 +156,7 @@ section
have pnez : p ≠ 0, from have pnez : p ≠ 0, from
(suppose p = 0, (suppose p = 0,
show false, show false,
by let H := (pos_of_prime primep); rewrite this at H; exfalso; exact !lt.irrefl H), by note H := (pos_of_prime primep); rewrite this at H; exfalso; exact !lt.irrefl H),
assert agtz : a > 0, from pos_of_ne_zero assert agtz : a > 0, from pos_of_ne_zero
(suppose a = 0, (suppose a = 0,
show false, using npos pnez, by revert peq; rewrite [this, zero_pow npos]; exact pnez), show false, using npos pnez, by revert peq; rewrite [this, zero_pow npos]; exact pnez),

View file

@ -72,7 +72,7 @@
"xrewrite" "krewrite" "blast" "simp" "esimp" "unfold" "change" "check_expr" "contradiction" "xrewrite" "krewrite" "blast" "simp" "esimp" "unfold" "change" "check_expr" "contradiction"
"exfalso" "split" "existsi" "constructor" "fconstructor" "left" "right" "injection" "congruence" "reflexivity" "exfalso" "split" "existsi" "constructor" "fconstructor" "left" "right" "injection" "congruence" "reflexivity"
"symmetry" "transitivity" "state" "induction" "induction_using" "fail" "append" "symmetry" "transitivity" "state" "induction" "induction_using" "fail" "append"
"substvars" "now" "with_options" "with_attributes" "with_attrs") "substvars" "now" "with_options" "with_attributes" "with_attrs" "note")
"lean tactics") "lean tactics")
(defconst lean-tactics-regexp (defconst lean-tactics-regexp
(eval `(rx word-start (or ,@lean-tactics) word-end))) (eval `(rx word-start (or ,@lean-tactics) word-end)))

View file

@ -4,7 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura Author: Leonardo de Moura
*/ */
#include "library/tactic/let_tactic.h" #include <library/let.h>
#include <library/constants.h>
#include "library/tactic/note_tactic.h"
#include "library/tactic/generalize_tactic.h" #include "library/tactic/generalize_tactic.h"
#include "frontends/lean/tokens.h" #include "frontends/lean/tokens.h"
#include "frontends/lean/parser.h" #include "frontends/lean/parser.h"
@ -43,10 +45,22 @@ static expr parse_rparen(parser &, unsigned, expr const * args, pos_info const &
} }
static expr parse_let_tactic(parser & p, unsigned, expr const *, pos_info const & pos) { static expr parse_let_tactic(parser & p, unsigned, expr const *, pos_info const & pos) {
auto id_pos = p.pos();
name id = p.check_atomic_id_next("invalid 'let' tactic, identifier expected"); name id = p.check_atomic_id_next("invalid 'let' tactic, identifier expected");
p.check_token_next(get_assign_tk(), "invalid 'let' tactic, ':=' expected"); p.check_token_next(get_assign_tk(), "invalid 'let' tactic, ':=' expected");
expr value = p.parse_tactic_expr_arg(); expr value = p.parse_tactic_expr_arg();
return p.save_pos(mk_let_tactic_expr(id, value), pos); // Register value as expandable local expr. Identical to let term parsing, but without surrounding mk_let.
value = p.save_pos(mk_let_value(value), id_pos);
p.add_local_expr(id, value);
// nothing to do, so return the id tactic
return p.save_pos(mk_constant(get_tactic_id_name()), pos);
}
static expr parse_note_tactic(parser & p, unsigned, expr const *, pos_info const & pos) {
name id = p.check_atomic_id_next("invalid 'note' tactic, identifier expected");
p.check_token_next(get_assign_tk(), "invalid 'note' tactic, ':=' expected");
expr value = p.parse_tactic_expr_arg();
return p.save_pos(mk_note_tactic_expr(id, value), pos);
} }
static expr parse_with_options_tactic_expr(parser & p, unsigned, expr const *, pos_info const & pos) { static expr parse_with_options_tactic_expr(parser & p, unsigned, expr const *, pos_info const & pos) {
@ -87,6 +101,7 @@ parse_table init_tactic_nud_table() {
r = r.add({transition("unfold", mk_ext_action(parse_unfold_tactic_expr))}, x0); r = r.add({transition("unfold", mk_ext_action(parse_unfold_tactic_expr))}, x0);
r = r.add({transition("fold", mk_ext_action(parse_fold_tactic_expr))}, x0); r = r.add({transition("fold", mk_ext_action(parse_fold_tactic_expr))}, x0);
r = r.add({transition("let", mk_ext_action(parse_let_tactic))}, x0); r = r.add({transition("let", mk_ext_action(parse_let_tactic))}, x0);
r = r.add({transition("note", mk_ext_action(parse_note_tactic))}, x0);
r = r.add({transition("with_options", mk_ext_action(parse_with_options_tactic_expr))}, x0); r = r.add({transition("with_options", mk_ext_action(parse_with_options_tactic_expr))}, x0);
r = r.add({transition("with_attributes", mk_ext_action(parse_with_attributes_tactic_expr))}, x0); r = r.add({transition("with_attributes", mk_ext_action(parse_with_attributes_tactic_expr))}, x0);
r = r.add({transition("with_attrs", mk_ext_action(parse_with_attributes_tactic_expr))}, x0); r = r.add({transition("with_attrs", mk_ext_action(parse_with_attributes_tactic_expr))}, x0);

View file

@ -96,7 +96,7 @@ void init_token_table(token_table & t) {
{"", 0}, {"", g_max_prec}, {"", 0}, {"^", 0}, {"", 0}, {"", 0}, {"", 0}, {"", g_max_prec}, {"", 0}, {"^", 0}, {"", 0}, {"", 0},
{"using", 0}, {"|", 0}, {"!", g_max_prec}, {"?", 0}, {"with", 0}, {"...", 0}, {",", 0}, {"using", 0}, {"|", 0}, {"!", g_max_prec}, {"?", 0}, {"with", 0}, {"...", 0}, {",", 0},
{".", 0}, {":", 0}, {"::", 0}, {"calc", 0}, {"rewrite", 0}, {"xrewrite", 0}, {"krewrite", 0}, {".", 0}, {":", 0}, {"::", 0}, {"calc", 0}, {"rewrite", 0}, {"xrewrite", 0}, {"krewrite", 0},
{"esimp", 0}, {"fold", 0}, {"unfold", 0}, {"with_options", 0}, {"with_attributes", 0}, {"with_attrs", 0}, {"esimp", 0}, {"fold", 0}, {"unfold", 0}, {"note", 0}, {"with_options", 0}, {"with_attributes", 0}, {"with_attrs", 0},
{"generalize", 0}, {"as", 0}, {":=", 0}, {"--", 0}, {"#", 0}, {"#tactic", 0}, {"generalize", 0}, {"as", 0}, {":=", 0}, {"--", 0}, {"#", 0}, {"#tactic", 0},
{"(*", 0}, {"/-", 0}, {"begin", g_max_prec}, {"begin+", g_max_prec}, {"abstract", g_max_prec}, {"(*", 0}, {"/-", 0}, {"begin", g_max_prec}, {"begin+", g_max_prec}, {"abstract", g_max_prec},
{"proof", g_max_prec}, {"qed", 0}, {"@@", g_max_prec}, {"@", g_max_prec}, {"proof", g_max_prec}, {"qed", 0}, {"@@", g_max_prec}, {"@", g_max_prec},

View file

@ -229,8 +229,8 @@ name const * g_tactic_identifier_list = nullptr;
name const * g_tactic_interleave = nullptr; name const * g_tactic_interleave = nullptr;
name const * g_tactic_intro = nullptr; name const * g_tactic_intro = nullptr;
name const * g_tactic_intros = nullptr; name const * g_tactic_intros = nullptr;
name const * g_tactic_lettac = nullptr;
name const * g_tactic_none_expr = nullptr; name const * g_tactic_none_expr = nullptr;
name const * g_tactic_notetac = nullptr;
name const * g_tactic_now = nullptr; name const * g_tactic_now = nullptr;
name const * g_tactic_opt_expr = nullptr; name const * g_tactic_opt_expr = nullptr;
name const * g_tactic_opt_expr_list = nullptr; name const * g_tactic_opt_expr_list = nullptr;
@ -487,8 +487,8 @@ void initialize_constants() {
g_tactic_interleave = new name{"tactic", "interleave"}; g_tactic_interleave = new name{"tactic", "interleave"};
g_tactic_intro = new name{"tactic", "intro"}; g_tactic_intro = new name{"tactic", "intro"};
g_tactic_intros = new name{"tactic", "intros"}; g_tactic_intros = new name{"tactic", "intros"};
g_tactic_lettac = new name{"tactic", "lettac"};
g_tactic_none_expr = new name{"tactic", "none_expr"}; g_tactic_none_expr = new name{"tactic", "none_expr"};
g_tactic_notetac = new name{"tactic", "notetac"};
g_tactic_now = new name{"tactic", "now"}; g_tactic_now = new name{"tactic", "now"};
g_tactic_opt_expr = new name{"tactic", "opt_expr"}; g_tactic_opt_expr = new name{"tactic", "opt_expr"};
g_tactic_opt_expr_list = new name{"tactic", "opt_expr_list"}; g_tactic_opt_expr_list = new name{"tactic", "opt_expr_list"};
@ -746,8 +746,8 @@ void finalize_constants() {
delete g_tactic_interleave; delete g_tactic_interleave;
delete g_tactic_intro; delete g_tactic_intro;
delete g_tactic_intros; delete g_tactic_intros;
delete g_tactic_lettac;
delete g_tactic_none_expr; delete g_tactic_none_expr;
delete g_tactic_notetac;
delete g_tactic_now; delete g_tactic_now;
delete g_tactic_opt_expr; delete g_tactic_opt_expr;
delete g_tactic_opt_expr_list; delete g_tactic_opt_expr_list;
@ -1004,8 +1004,8 @@ name const & get_tactic_identifier_list_name() { return *g_tactic_identifier_lis
name const & get_tactic_interleave_name() { return *g_tactic_interleave; } name const & get_tactic_interleave_name() { return *g_tactic_interleave; }
name const & get_tactic_intro_name() { return *g_tactic_intro; } name const & get_tactic_intro_name() { return *g_tactic_intro; }
name const & get_tactic_intros_name() { return *g_tactic_intros; } name const & get_tactic_intros_name() { return *g_tactic_intros; }
name const & get_tactic_lettac_name() { return *g_tactic_lettac; }
name const & get_tactic_none_expr_name() { return *g_tactic_none_expr; } name const & get_tactic_none_expr_name() { return *g_tactic_none_expr; }
name const & get_tactic_notetac_name() { return *g_tactic_notetac; }
name const & get_tactic_now_name() { return *g_tactic_now; } name const & get_tactic_now_name() { return *g_tactic_now; }
name const & get_tactic_opt_expr_name() { return *g_tactic_opt_expr; } name const & get_tactic_opt_expr_name() { return *g_tactic_opt_expr; }
name const & get_tactic_opt_expr_list_name() { return *g_tactic_opt_expr_list; } name const & get_tactic_opt_expr_list_name() { return *g_tactic_opt_expr_list; }

View file

@ -231,8 +231,8 @@ name const & get_tactic_identifier_list_name();
name const & get_tactic_interleave_name(); name const & get_tactic_interleave_name();
name const & get_tactic_intro_name(); name const & get_tactic_intro_name();
name const & get_tactic_intros_name(); name const & get_tactic_intros_name();
name const & get_tactic_lettac_name();
name const & get_tactic_none_expr_name(); name const & get_tactic_none_expr_name();
name const & get_tactic_notetac_name();
name const & get_tactic_now_name(); name const & get_tactic_now_name();
name const & get_tactic_opt_expr_name(); name const & get_tactic_opt_expr_name();
name const & get_tactic_opt_expr_list_name(); name const & get_tactic_opt_expr_list_name();

View file

@ -224,8 +224,8 @@ tactic.identifier_list
tactic.interleave tactic.interleave
tactic.intro tactic.intro
tactic.intros tactic.intros
tactic.lettac
tactic.none_expr tactic.none_expr
tactic.notetac
tactic.now tactic.now
tactic.opt_expr tactic.opt_expr
tactic.opt_expr_list tactic.opt_expr_list

View file

@ -3,7 +3,7 @@ apply_tactic.cpp intros_tactic.cpp rename_tactic.cpp trace_tactic.cpp
exact_tactic.cpp generalize_tactic.cpp inversion_tactic.cpp exact_tactic.cpp generalize_tactic.cpp inversion_tactic.cpp
whnf_tactic.cpp revert_tactic.cpp assert_tactic.cpp clear_tactic.cpp whnf_tactic.cpp revert_tactic.cpp assert_tactic.cpp clear_tactic.cpp
expr_to_tactic.cpp location.cpp rewrite_tactic.cpp util.cpp expr_to_tactic.cpp location.cpp rewrite_tactic.cpp util.cpp
init_module.cpp change_tactic.cpp check_expr_tactic.cpp let_tactic.cpp init_module.cpp change_tactic.cpp check_expr_tactic.cpp note_tactic.cpp
contradiction_tactic.cpp exfalso_tactic.cpp constructor_tactic.cpp contradiction_tactic.cpp exfalso_tactic.cpp constructor_tactic.cpp
injection_tactic.cpp congruence_tactic.cpp relation_tactics.cpp injection_tactic.cpp congruence_tactic.cpp relation_tactics.cpp
induction_tactic.cpp subst_tactic.cpp unfold_rec.cpp with_options_tactic.cpp induction_tactic.cpp subst_tactic.cpp unfold_rec.cpp with_options_tactic.cpp

View file

@ -21,7 +21,7 @@ Author: Leonardo de Moura
#include "library/tactic/rewrite_tactic.h" #include "library/tactic/rewrite_tactic.h"
#include "library/tactic/change_tactic.h" #include "library/tactic/change_tactic.h"
#include "library/tactic/check_expr_tactic.h" #include "library/tactic/check_expr_tactic.h"
#include "library/tactic/let_tactic.h" #include "library/tactic/note_tactic.h"
#include "library/tactic/contradiction_tactic.h" #include "library/tactic/contradiction_tactic.h"
#include "library/tactic/exfalso_tactic.h" #include "library/tactic/exfalso_tactic.h"
#include "library/tactic/constructor_tactic.h" #include "library/tactic/constructor_tactic.h"
@ -52,7 +52,7 @@ void initialize_tactic_module() {
initialize_rewrite_tactic(); initialize_rewrite_tactic();
initialize_change_tactic(); initialize_change_tactic();
initialize_check_expr_tactic(); initialize_check_expr_tactic();
initialize_let_tactic(); initialize_note_tactic();
initialize_contradiction_tactic(); initialize_contradiction_tactic();
initialize_exfalso_tactic(); initialize_exfalso_tactic();
initialize_constructor_tactic(); initialize_constructor_tactic();
@ -78,7 +78,7 @@ void finalize_tactic_module() {
finalize_constructor_tactic(); finalize_constructor_tactic();
finalize_exfalso_tactic(); finalize_exfalso_tactic();
finalize_contradiction_tactic(); finalize_contradiction_tactic();
finalize_let_tactic(); finalize_note_tactic();
finalize_check_expr_tactic(); finalize_check_expr_tactic();
finalize_change_tactic(); finalize_change_tactic();
finalize_rewrite_tactic(); finalize_rewrite_tactic();

View file

@ -13,12 +13,12 @@ Author: Leonardo de Moura
#include "library/tactic/expr_to_tactic.h" #include "library/tactic/expr_to_tactic.h"
namespace lean { namespace lean {
expr mk_let_tactic_expr(name const & id, expr const & e) { expr mk_note_tactic_expr(name const &id, expr const &e) {
return mk_app(mk_constant(get_tactic_lettac_name()), return mk_app(mk_constant(get_tactic_notetac_name()),
mk_constant(id), e); mk_constant(id), e);
} }
tactic let_tactic(elaborate_fn const & elab, name const & id, expr const & e) { tactic note_tactic(elaborate_fn const & elab, name const & id, expr const & e) {
return tactic01([=](environment const & env, io_state const & ios, proof_state const & s) { return tactic01([=](environment const & env, io_state const & ios, proof_state const & s) {
proof_state new_s = s; proof_state new_s = s;
goals const & gs = new_s.get_goals(); goals const & gs = new_s.get_goals();
@ -33,7 +33,7 @@ tactic let_tactic(elaborate_fn const & elab, name const & id, expr const & e) {
expr new_e; substitution new_subst; constraints cs; expr new_e; substitution new_subst; constraints cs;
std::tie(new_e, new_subst, cs) = esc; std::tie(new_e, new_subst, cs) = esc;
if (cs) if (cs)
throw_tactic_exception_if_enabled(s, "invalid 'let' tactic, fail to resolve generated constraints"); throw_tactic_exception_if_enabled(s, "invalid 'note' tactic, fail to resolve generated constraints");
auto tc = mk_type_checker(env, ngen.mk_child()); auto tc = mk_type_checker(env, ngen.mk_child());
expr new_e_type = tc->infer(new_e).first; expr new_e_type = tc->infer(new_e).first;
expr new_local = mk_local(ngen.next(), id, new_e_type, binder_info()); expr new_local = mk_local(ngen.next(), id, new_e_type, binder_info());
@ -50,14 +50,14 @@ tactic let_tactic(elaborate_fn const & elab, name const & id, expr const & e) {
}); });
} }
void initialize_let_tactic() { void initialize_note_tactic() {
register_tac(get_tactic_lettac_name(), register_tac(get_tactic_notetac_name(),
[](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) { [](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) {
name id = tactic_expr_to_id(app_arg(app_fn(e)), "invalid 'let' tactic, argument must be an identifier"); name id = tactic_expr_to_id(app_arg(app_fn(e)), "invalid 'note' tactic, argument must be an identifier");
check_tactic_expr(app_arg(e), "invalid 'let' tactic, argument must be an expression"); check_tactic_expr(app_arg(e), "invalid 'note' tactic, argument must be an expression");
return let_tactic(fn, id, get_tactic_expr_expr(app_arg(e))); return note_tactic(fn, id, get_tactic_expr_expr(app_arg(e)));
}); });
} }
void finalize_let_tactic() { void finalize_note_tactic() {
} }
} }

View file

@ -8,7 +8,7 @@ Author: Leonardo de Moura
#include "kernel/expr.h" #include "kernel/expr.h"
namespace lean { namespace lean {
expr mk_let_tactic_expr(name const & id, expr const & e); expr mk_note_tactic_expr(name const &id, expr const &e);
void initialize_let_tactic(); void initialize_note_tactic();
void finalize_let_tactic(); void finalize_note_tactic();
} }

View file

@ -16,7 +16,7 @@ by krewrite [to_right_inv e b]
example (b : B) : g (f (g b)) = g b := example (b : B) : g (f (g b)) = g b :=
begin begin
let H := to_right_inv e b, note H := to_right_inv e b,
esimp at H, esimp at H,
rewrite H rewrite H
end end

View file

@ -8,7 +8,6 @@ bool.band_tt|∀ (a : bool), eq (bool.band a bool.tt) a
bool.tt|bool bool.tt|bool
bool.eq_tt_of_bnot_eq_ff|eq (bool.bnot ?a) bool.ff → eq ?a bool.tt bool.eq_tt_of_bnot_eq_ff|eq (bool.bnot ?a) bool.ff → eq ?a bool.tt
bool.eq_ff_of_bnot_eq_tt|eq (bool.bnot ?a) bool.tt → eq ?a bool.ff bool.eq_ff_of_bnot_eq_tt|eq (bool.bnot ?a) bool.tt → eq ?a bool.ff
tactic.lettac|tactic.identifier → tactic.expr → tactic
bool.absurd_of_eq_ff_of_eq_tt|eq ?a bool.ff → eq ?a bool.tt → ?B bool.absurd_of_eq_ff_of_eq_tt|eq ?a bool.ff → eq ?a bool.tt → ?B
bool.eq_tt_of_ne_ff|ne ?a bool.ff → eq ?a bool.tt bool.eq_tt_of_ne_ff|ne ?a bool.ff → eq ?a bool.tt
tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic
@ -28,7 +27,6 @@ bor_tt|∀ (a : bool), eq (bor a tt) tt
band_tt|∀ (a : bool), eq (band a tt) a band_tt|∀ (a : bool), eq (band a tt) a
eq_tt_of_bnot_eq_ff|eq (bnot ?a) ff → eq ?a tt eq_tt_of_bnot_eq_ff|eq (bnot ?a) ff → eq ?a tt
eq_ff_of_bnot_eq_tt|eq (bnot ?a) tt → eq ?a ff eq_ff_of_bnot_eq_tt|eq (bnot ?a) tt → eq ?a ff
tactic.lettac|tactic.identifier → tactic.expr → tactic
absurd_of_eq_ff_of_eq_tt|eq ?a ff → eq ?a tt → ?B absurd_of_eq_ff_of_eq_tt|eq ?a ff → eq ?a tt → ?B
eq_tt_of_ne_ff|ne ?a ff → eq ?a tt eq_tt_of_ne_ff|ne ?a ff → eq ?a tt
tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic

View file

@ -11,7 +11,7 @@ begin
induction a with f₁ h₁, induction a with f₁ h₁,
induction b with f₂ h₂, induction b with f₂ h₂,
subst xs, subst xs,
let e := to_set.inj h₂, note e := to_set.inj h₂,
subst e subst e
end end

View file

@ -17,7 +17,7 @@ begin
induction a with f₁ h₁, induction a with f₁ h₁,
induction b with f₂ h₂, induction b with f₂ h₂,
subst xs, subst xs,
let e := to_set.inj h₂, note e := to_set.inj h₂,
subst e subst e
end end

View file

@ -23,6 +23,6 @@ begin
induction fn₁ with fxs₁ h₁, induction fn₁ with fxs₁ h₁,
induction fn₂ with fxs₂ h₂, induction fn₂ with fxs₂ h₂,
subst xs, subst xs,
let aux := to_set.inj h₂, note aux := to_set.inj h₂,
subst aux subst aux
end end

View file

@ -4,6 +4,8 @@ open algebra
example (a b : Prop) : a → b → a ∧ b := example (a b : Prop) : a → b → a ∧ b :=
begin begin
intro Ha, intro Hb, intro Ha, intro Hb,
let Ha' := Ha,
let Hb' := Hb,
let aux := and.intro Ha Hb, let aux := and.intro Ha Hb,
exact aux exact aux
end end