diff --git a/library/data/nat/decl.lean b/library/data/nat/decl.lean index a01108bce..bfc3f0925 100644 --- a/library/data/nat/decl.lean +++ b/library/data/nat/decl.lean @@ -314,4 +314,14 @@ namespace nat (lt.trans (@ih b₁ bpos) (lt.base a₁)))), λ h₁ h₂, aux h₁ h₂ + definition sub_pred (a : nat) : pred a ≤ a := + cases_on a + (le.refl zero) + (λ a₁, le.of_lt (lt.base a₁)) + + definition sub_le_self (a b : nat) : a - b ≤ a := + induction_on b + (le.refl a) + (λ b₁ ih, le.trans !sub_pred ih) + end nat diff --git a/library/data/nat/sub.lean b/library/data/nat/sub.lean index 06b758f85..1624b43c5 100644 --- a/library/data/nat/sub.lean +++ b/library/data/nat/sub.lean @@ -222,11 +222,6 @@ or.elim !le_total (assume H3 : n ≤ m, (le_imp_sub_eq_zero H3)⁻¹ ▸ (H1 H3)) (assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3)) -theorem sub_le_self (n m : ℕ) : n - m ≤ n := -sub_split - (assume H : n ≤ m, !zero_le) - (take k : ℕ, assume H : m + k = n, le_intro (!add.comm ▸ H)) - theorem le_elim_sub {n m : ℕ} (H : n ≤ m) : ∃k, m - k = n := obtain (k : ℕ) (Hk : n + k = m), from le_elim H, exists_intro k