fix(library/tactic/rewrite_tactic): do not allow projections to be unfolded
fixes #1032 This is just a workaround. A better fix has been implemented in the lean3 branch.
This commit is contained in:
parent
a07ad6df62
commit
226f8bafeb
4 changed files with 10 additions and 7 deletions
|
@ -68,7 +68,6 @@ namespace arrow
|
||||||
⬝ is_retraction.right_inverse_cod r (g a)))
|
⬝ is_retraction.right_inverse_cod r (g a)))
|
||||||
(fiber.mk a (refl (g a)))
|
(fiber.mk a (refl (g a)))
|
||||||
(is_retraction.right_inverse_dom r a), -- everything but this field should be inferred
|
(is_retraction.right_inverse_dom r a), -- everything but this field should be inferred
|
||||||
unfold fiber.point_eq,
|
|
||||||
rewrite [is_retraction.cohere r a],
|
rewrite [is_retraction.cohere r a],
|
||||||
apply inv_con_cancel_right
|
apply inv_con_cancel_right
|
||||||
end
|
end
|
||||||
|
|
|
@ -69,7 +69,7 @@ notation [priority finset.prio] a ∉ b := ¬ mem a b
|
||||||
|
|
||||||
lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s :=
|
lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s :=
|
||||||
begin
|
begin
|
||||||
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
|
unfold [insert, of_finset, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
|
||||||
intro h,
|
intro h,
|
||||||
rewrite [finset.to_nat_insert h],
|
rewrite [finset.to_nat_insert h],
|
||||||
rewrite [to_nat_of_nat, -zero_add s at {1}],
|
rewrite [to_nat_of_nat, -zero_add s at {1}],
|
||||||
|
@ -80,7 +80,7 @@ end
|
||||||
lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf}
|
lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf}
|
||||||
: a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ :=
|
: a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ :=
|
||||||
begin
|
begin
|
||||||
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
|
unfold [insert, of_finset, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
|
||||||
intro h₁ h₂ h₃,
|
intro h₁ h₂ h₃,
|
||||||
rewrite [finset.to_nat_insert h₁],
|
rewrite [finset.to_nat_insert h₁],
|
||||||
rewrite [finset.to_nat_insert h₂, *to_nat_of_nat],
|
rewrite [finset.to_nat_insert h₂, *to_nat_of_nat],
|
||||||
|
|
|
@ -97,7 +97,7 @@ definition smul (a : ℤ) (b : prerat) (H : a > 0) : prerat :=
|
||||||
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
|
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
|
||||||
|
|
||||||
theorem of_int_add (a b : ℤ) : of_int (a + b) ≡ add (of_int a) (of_int b) :=
|
theorem of_int_add (a b : ℤ) : of_int (a + b) ≡ add (of_int a) (of_int b) :=
|
||||||
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one]
|
by esimp [equiv, one, add, of_int]; rewrite [*int.mul_one]
|
||||||
|
|
||||||
theorem of_int_mul (a b : ℤ) : of_int (a * b) ≡ mul (of_int a) (of_int b) :=
|
theorem of_int_mul (a b : ℤ) : of_int (a * b) ≡ mul (of_int a) (of_int b) :=
|
||||||
!equiv.refl
|
!equiv.refl
|
||||||
|
@ -114,7 +114,7 @@ definition inv : prerat → prerat
|
||||||
| inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos
|
| inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos
|
||||||
|
|
||||||
theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero :=
|
theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero :=
|
||||||
by rewrite [↑equiv, H, ↑zero, ↑num, ↑of_int, *zero_mul]
|
by rewrite [↑equiv, H, ↑zero, ↑of_int, *zero_mul]
|
||||||
|
|
||||||
theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 :=
|
theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 :=
|
||||||
by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H
|
by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H
|
||||||
|
@ -256,7 +256,7 @@ theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ on
|
||||||
calc
|
calc
|
||||||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp)
|
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp)
|
||||||
... ≡ one : begin
|
... ≡ one : begin
|
||||||
esimp [equiv, num, denom, one, mul, of_int],
|
esimp [equiv, one, mul, of_int],
|
||||||
rewrite [*int.mul_one, *int.one_mul, mul.comm,
|
rewrite [*int.mul_one, *int.one_mul, mul.comm,
|
||||||
neg_mul_comm]
|
neg_mul_comm]
|
||||||
end)
|
end)
|
||||||
|
@ -266,7 +266,7 @@ theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ on
|
||||||
calc
|
calc
|
||||||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp)
|
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp)
|
||||||
... ≡ one : begin
|
... ≡ one : begin
|
||||||
esimp [equiv, num, denom, one, mul, of_int],
|
esimp [equiv, one, mul, of_int],
|
||||||
rewrite [*int.mul_one, *int.one_mul, mul.comm]
|
rewrite [*int.mul_one, *int.one_mul, mul.comm]
|
||||||
end)
|
end)
|
||||||
|
|
||||||
|
|
|
@ -644,6 +644,10 @@ class rewrite_fn {
|
||||||
// TODO(Leo): should we add add an option that will not try to fold recursive applications
|
// TODO(Leo): should we add add an option that will not try to fold recursive applications
|
||||||
if (to_unfold) {
|
if (to_unfold) {
|
||||||
lean_assert(occs);
|
lean_assert(occs);
|
||||||
|
for (name const & n : to_unfold) {
|
||||||
|
if (is_projection(m_env, n))
|
||||||
|
throw_rewrite_exception(sstream() << "invalid 'unfold', '" << n << "' is a projection");
|
||||||
|
}
|
||||||
auto new_e = unfold_rec(m_env, force_unfold, e, to_unfold, *occs);
|
auto new_e = unfold_rec(m_env, force_unfold, e, to_unfold, *occs);
|
||||||
if (!new_e)
|
if (!new_e)
|
||||||
return none_expr();
|
return none_expr();
|
||||||
|
|
Loading…
Reference in a new issue