fix(library/tactic/rewrite_tactic): do not allow projections to be unfolded

fixes #1032

This is just a workaround. A better fix has been implemented in the
lean3 branch.
This commit is contained in:
Leonardo de Moura 2016-03-28 12:53:49 -07:00
parent a07ad6df62
commit 226f8bafeb
4 changed files with 10 additions and 7 deletions

View file

@ -68,7 +68,6 @@ namespace arrow
⬝ is_retraction.right_inverse_cod r (g a))) ⬝ is_retraction.right_inverse_cod r (g a)))
(fiber.mk a (refl (g a))) (fiber.mk a (refl (g a)))
(is_retraction.right_inverse_dom r a), -- everything but this field should be inferred (is_retraction.right_inverse_dom r a), -- everything but this field should be inferred
unfold fiber.point_eq,
rewrite [is_retraction.cohere r a], rewrite [is_retraction.cohere r a],
apply inv_con_cancel_right apply inv_con_cancel_right
end end

View file

@ -69,7 +69,7 @@ notation [priority finset.prio] a ∉ b := ¬ mem a b
lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s := lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s :=
begin begin
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], unfold [insert, of_finset, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
intro h, intro h,
rewrite [finset.to_nat_insert h], rewrite [finset.to_nat_insert h],
rewrite [to_nat_of_nat, -zero_add s at {1}], rewrite [to_nat_of_nat, -zero_add s at {1}],
@ -80,7 +80,7 @@ end
lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf} lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf}
: a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ := : a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ :=
begin begin
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], unfold [insert, of_finset, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
intro h₁ h₂ h₃, intro h₁ h₂ h₃,
rewrite [finset.to_nat_insert h₁], rewrite [finset.to_nat_insert h₁],
rewrite [finset.to_nat_insert h₂, *to_nat_of_nat], rewrite [finset.to_nat_insert h₂, *to_nat_of_nat],

View file

@ -97,7 +97,7 @@ definition smul (a : ) (b : prerat) (H : a > 0) : prerat :=
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b)) prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
theorem of_int_add (a b : ) : of_int (a + b) ≡ add (of_int a) (of_int b) := theorem of_int_add (a b : ) : of_int (a + b) ≡ add (of_int a) (of_int b) :=
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one] by esimp [equiv, one, add, of_int]; rewrite [*int.mul_one]
theorem of_int_mul (a b : ) : of_int (a * b) ≡ mul (of_int a) (of_int b) := theorem of_int_mul (a b : ) : of_int (a * b) ≡ mul (of_int a) (of_int b) :=
!equiv.refl !equiv.refl
@ -114,7 +114,7 @@ definition inv : prerat → prerat
| inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos | inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos
theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero := theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero :=
by rewrite [↑equiv, H, ↑zero, ↑num, ↑of_int, *zero_mul] by rewrite [↑equiv, H, ↑zero, ↑of_int, *zero_mul]
theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 := theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 :=
by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H
@ -256,7 +256,7 @@ theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ on
calc calc
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp) mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp)
... ≡ one : begin ... ≡ one : begin
esimp [equiv, num, denom, one, mul, of_int], esimp [equiv, one, mul, of_int],
rewrite [*int.mul_one, *int.one_mul, mul.comm, rewrite [*int.mul_one, *int.one_mul, mul.comm,
neg_mul_comm] neg_mul_comm]
end) end)
@ -266,7 +266,7 @@ theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ on
calc calc
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp) mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp)
... ≡ one : begin ... ≡ one : begin
esimp [equiv, num, denom, one, mul, of_int], esimp [equiv, one, mul, of_int],
rewrite [*int.mul_one, *int.one_mul, mul.comm] rewrite [*int.mul_one, *int.one_mul, mul.comm]
end) end)

View file

@ -644,6 +644,10 @@ class rewrite_fn {
// TODO(Leo): should we add add an option that will not try to fold recursive applications // TODO(Leo): should we add add an option that will not try to fold recursive applications
if (to_unfold) { if (to_unfold) {
lean_assert(occs); lean_assert(occs);
for (name const & n : to_unfold) {
if (is_projection(m_env, n))
throw_rewrite_exception(sstream() << "invalid 'unfold', '" << n << "' is a projection");
}
auto new_e = unfold_rec(m_env, force_unfold, e, to_unfold, *occs); auto new_e = unfold_rec(m_env, force_unfold, e, to_unfold, *occs);
if (!new_e) if (!new_e)
return none_expr(); return none_expr();